Energy states in InAs-GaAs quantum dots-in-asymmetric-well infrared photodetector structure

Authors
Nam, H. D.Doyennette, L.Song, J. D.Choi, W. J.Yang, H. S.Lee, J. I.Julien, F. H.
Issue Date
2006-05
Publisher
ELSEVIER
Citation
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, v.32, no.1-2, pp.524 - 527
Abstract
We investigated the energy states in InAs-GaAs quantum dot infrared photodetector (QDIP) structure utilizing near-infrared transmission spectroscopy and photoluminescence (PL) spectroscopy, and correlated to the results of intersubband transitions observed in photocurrent (PC) spectrum. The transmission spectrum at room temperature (RT) shows inflections in the 0.9-1.15 eV region due to the interband absorption in the InAs QDs with peaks at 0.96, 1.04, and 1.11 eV. The peak at 0.96 eV, in agreement with the PL data at RT, is clearly the fundamental hh1-e1 absorption of the dot. The two other peaks can be attributed to the hh2-e2 and hh3-e3 inter-band dot absorption. These results show that there are at least two (likely three) bound states in the conduction and valence band of the InAs QDs, respectively. The PC spectrum was observed at 11 K, between 100 and 400 meV of transition energies with a peak at 163 meV, which corresponds to e1-e(well) intersubband transition. (c) 2006 Elsevier B.V. All rights reserved.
Keywords
quantum dots; intersubband transition; infrared photodetector
ISSN
1386-9477
URI
https://pubs.kist.re.kr/handle/201004/135546
DOI
10.1016/j.physe.2005.12.147
Appears in Collections:
KIST Article > 2006
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE