Full metadata record

DC Field Value Language
dc.contributor.authorCho, YW-
dc.contributor.authorShim, JH-
dc.contributor.authorLee, BJ-
dc.date.accessioned2024-01-21T03:34:42Z-
dc.date.available2024-01-21T03:34:42Z-
dc.date.created2021-09-02-
dc.date.issued2006-03-
dc.identifier.issn0364-5916-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/135697-
dc.description.abstractSome alkali and alkali-earth metal hydrides and their complex hydrides have very high hydrogen storage capacities and reversibility. Unfortunately, most of them have decomposition temperatures that are too high. This must be overcome before these hydrides can be considered seriously as practical hydrogen storage materials for on-board applications. In the present study, the CALPHAD approach has been adopted to evaluate thermodynamically the possibility of destabilizing these high temperature binary ionic hydrides and ternary complex hydrides by reacting them with light elements or other hydrides. The MgH2 + Si, LiBH4 + MgH2, and LiBH4 +Al systerns are predicted to show a significant decrease in decomposition temperature. On the other hand, the decrease in the decomposition temperatures of the MgH2 + Al and NaBH4 + Al systems is relatively small. The LiH + Si system also presents a considerable destabilization effect, which is consistent with experiment. (c) 2005 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectHYDROGEN STORAGE PROPERTIES-
dc.subjectMG-
dc.subjectLI-
dc.subjectLIBH4-
dc.subjectMAGNESIUM-
dc.subjectSORPTION-
dc.subjectSYSTEM-
dc.subjectFETI-
dc.subjectSI-
dc.titleThermal destabilization of binary and complex metal hydrides by chemical reaction: A thermodynamic analysis-
dc.typeArticle-
dc.identifier.doi10.1016/j.calphad.2005.10.002-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, v.30, no.1, pp.65 - 69-
dc.citation.titleCALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY-
dc.citation.volume30-
dc.citation.number1-
dc.citation.startPage65-
dc.citation.endPage69-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000235929100009-
dc.identifier.scopusid2-s2.0-31644431516-
dc.relation.journalWebOfScienceCategoryThermodynamics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaThermodynamics-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusHYDROGEN STORAGE PROPERTIES-
dc.subject.keywordPlusMG-
dc.subject.keywordPlusLI-
dc.subject.keywordPlusLIBH4-
dc.subject.keywordPlusMAGNESIUM-
dc.subject.keywordPlusSORPTION-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusFETI-
dc.subject.keywordPlusSI-
dc.subject.keywordAuthorbinary hydride-
dc.subject.keywordAuthorcomplex metal hydride-
dc.subject.keywordAuthorthermal decomposition-
dc.subject.keywordAuthorhydrogen storage materials-
dc.subject.keywordAuthorthermodynamic calculation-
Appears in Collections:
KIST Article > 2006
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE