Full metadata record

DC Field Value Language
dc.contributor.authorChun, MS-
dc.contributor.authorLee, TS-
dc.contributor.authorLee, K-
dc.date.accessioned2024-01-21T04:05:39Z-
dc.date.available2024-01-21T04:05:39Z-
dc.date.created2021-09-02-
dc.date.issued2005-12-
dc.identifier.issn1226-119X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/135970-
dc.description.abstractWe present a finite difference solution for electrokinetic flow in rectangular microchannels encompassing Navier's fluid slip phenomena. The externally applied body force originated from between the nonlinear Poisson-Boltzmann field around the channel wall and the flow-induced electric field is employed in the equation of motion. The basic principle of net current conservation is applied in the ion transport. The effects of the slip length and the long-range repulsion upon the velocity profile are examined in Conjunction with the friction factor. It is evident that the fluid slip counteracts the effect by the electric double layer and induces a larger flow rate. Particle streak imaging by fluorescent microscope and the data processing method developed Ourselves are applied to straight channel designed to allow for flow visualization of dilute latex colloids underlying the condition of simple fluid. The reliability of the velocity profile determined by the flow imaging is justified by comparing with the Finite difference solution. We recognized the behavior of fluid slip in velocity profiles at the hydrophobic Surface of polydimethylsiloxane wall, from which the slip length was evaluated for different conditions.-
dc.languageEnglish-
dc.publisherKOREAN SOC RHEOLOGY-
dc.subjectELECTROKINETIC FLOW-
dc.subjectLIQUID-
dc.subjectMICROCHANNELS-
dc.subjectCAPILLARY-
dc.subjectPARTICLES-
dc.subjectMIGRATION-
dc.subjectSURFACES-
dc.subjectDEVICES-
dc.titleMicroflow of dilute colloidal suspension in narrow channel of microfluidic-chip under Newtonian fluid slip condition-
dc.typeArticle-
dc.description.journalClass1-
dc.identifier.bibliographicCitationKOREA-AUSTRALIA RHEOLOGY JOURNAL, v.17, no.4, pp.207 - 215-
dc.citation.titleKOREA-AUSTRALIA RHEOLOGY JOURNAL-
dc.citation.volume17-
dc.citation.number4-
dc.citation.startPage207-
dc.citation.endPage215-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.description.journalRegisteredClassother-
dc.identifier.kciidART001155997-
dc.identifier.wosid000234257500008-
dc.identifier.scopusid2-s2.0-29744452174-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalResearchAreaPolymer Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTROKINETIC FLOW-
dc.subject.keywordPlusLIQUID-
dc.subject.keywordPlusMICROCHANNELS-
dc.subject.keywordPlusCAPILLARY-
dc.subject.keywordPlusPARTICLES-
dc.subject.keywordPlusMIGRATION-
dc.subject.keywordPlusSURFACES-
dc.subject.keywordPlusDEVICES-
dc.subject.keywordAuthormicrofluidic-chip-
dc.subject.keywordAuthorcolloidal suspension-
dc.subject.keywordAuthorfluid slip-
dc.subject.keywordAuthorelectrokinetic flow-
dc.subject.keywordAuthorparticle streak-
dc.subject.keywordAuthorpolydimethylsiloxane channel-
Appears in Collections:
KIST Article > 2005
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE