Full metadata record

DC Field Value Language
dc.contributor.authorLee, S-
dc.contributor.authorKim, E-
dc.contributor.authorSong, E-
dc.contributor.authorPark, M-
dc.date.accessioned2024-01-21T05:01:20Z-
dc.date.available2024-01-21T05:01:20Z-
dc.date.created2021-09-04-
dc.date.issued2005-06-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/136423-
dc.description.abstractA novel immunotronic approach to fault detection in hardware based on symbiotic evolution is proposed in this paper. In the immunotronic system, the generation of tolerance conditions corresponds to the generation of antibodies in the biological immune system. In this paper, the principle of antibody diversity, one of the most important concepts in the biological immune system, is employed and it is realized through symbiotic evolution. Symbiotic evolution imitates the generation of antibodies in the biological immune system more than the standard genetic algorithm(SCA) does. It is demonstrated that the suggested method outperforms the previous immunotronic methods with less running time. The suggested method is applied to fault detection in a decade counter (typical example of finite state machines) and MCNC finite state machines and its effectiveness is demonstrated by the computer simulation.-
dc.languageEnglish-
dc.publisherSPRINGER-VERLAG BERLIN-
dc.subjectTOLERANCE-
dc.titleA new immunotronic approach to hardware fault detection using symbiotic evolution-
dc.typeArticle-
dc.description.journalClass1-
dc.identifier.bibliographicCitationARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING APPLICATIONS: A BIOINSPIRED APPROACH, PT 2, PROCEEDINGS, v.3562, pp.133 - 142-
dc.citation.titleARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING APPLICATIONS: A BIOINSPIRED APPROACH, PT 2, PROCEEDINGS-
dc.citation.volume3562-
dc.citation.startPage133-
dc.citation.endPage142-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000230386700014-
dc.identifier.scopusid2-s2.0-26444432310-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.relation.journalResearchAreaComputer Science-
dc.type.docTypeArticle; Proceedings Paper-
dc.subject.keywordPlusTOLERANCE-
dc.subject.keywordAuthorimmunotronic system-
dc.subject.keywordAuthorhardware fault detection-
dc.subject.keywordAuthortolerance conditions-
dc.subject.keywordAuthorantibody diversity-
dc.subject.keywordAuthorsymbiotic evolution-
Appears in Collections:
KIST Article > 2005
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE