Full metadata record

DC Field Value Language
dc.contributor.authorKwon, UH-
dc.contributor.authorChoi, SH-
dc.contributor.authorPark, YH-
dc.contributor.authorLee, WJ-
dc.date.accessioned2024-01-21T05:13:11Z-
dc.date.available2024-01-21T05:13:11Z-
dc.date.created2021-09-01-
dc.date.issued2005-03-22-
dc.identifier.issn0040-6090-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/136641-
dc.description.abstractWe present a computational study on the plasma generation and film deposition in a circular type DC magnetron sputtering system. Design optimization of a large-area magnetron sputtering system needs a precise multi-scale simulation considering a target erosion by magnetron plasma, a macrofilm deposition by collisional transport, and a micro-deposition topography by collisionless transport. Our multi-scale simulation consists of particle-in-cell and Monte Carlo collision method (PIC-MCC) magnetron plasma simulation and Monte Carlo macro/microfilm deposition simulation. Thompson energy distribution and cosine angular distribution are used for the kinetic energy distribution and for the angular flux distribution of the sputtered atoms, respectively. A variable hard sphere (VHS) model is used to calculate the collision cross section of sputtered atoms and an equi-volume rate model (EVRM) is used to represent evolving film surface. The target erosion profiles are expected from the ion current density distribution on the sputter target simulated by two-dimensional PIC-MCC magnetron plasma simulator, and these profiles are compared with the experimental results. We present a discussion about the optimum detection range for the quasi-steady state of magnetron plasma in PIC-MCC simulation. Macro/microfilm deposition simulator predicts the macrofilm uniformity over the wafer and the micro-deposition topography in the micro-holes. Finally, we present a new algorithm, which can generate an asymmetric angular flux distribution, based on Monte Carlo method for microfilm deposition simulation. (C) 2004 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.subjectDISCHARGE-
dc.subjectATOMS-
dc.titleMulti-scale simulation of plasma generation and film deposition in a circular type DC magnetron sputtering system-
dc.typeArticle-
dc.identifier.doi10.1016/j.tsf.2004.08.038-
dc.description.journalClass1-
dc.identifier.bibliographicCitationTHIN SOLID FILMS, v.475, no.1-2, pp.17 - 23-
dc.citation.titleTHIN SOLID FILMS-
dc.citation.volume475-
dc.citation.number1-2-
dc.citation.startPage17-
dc.citation.endPage23-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000227268600005-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Proceedings Paper-
dc.subject.keywordPlusDISCHARGE-
dc.subject.keywordPlusATOMS-
dc.subject.keywordAuthorcomputer simulation-
dc.subject.keywordAuthorparticle-in-cell-
dc.subject.keywordAuthorMonte Carlo collision-
dc.subject.keywordAuthorplasma processing and deposition-
dc.subject.keywordAuthorsputtering-
Appears in Collections:
KIST Article > 2005
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE