Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kwon, UH | - |
dc.contributor.author | Choi, SH | - |
dc.contributor.author | Park, YH | - |
dc.contributor.author | Lee, WJ | - |
dc.date.accessioned | 2024-01-21T05:13:11Z | - |
dc.date.available | 2024-01-21T05:13:11Z | - |
dc.date.created | 2021-09-01 | - |
dc.date.issued | 2005-03-22 | - |
dc.identifier.issn | 0040-6090 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/136641 | - |
dc.description.abstract | We present a computational study on the plasma generation and film deposition in a circular type DC magnetron sputtering system. Design optimization of a large-area magnetron sputtering system needs a precise multi-scale simulation considering a target erosion by magnetron plasma, a macrofilm deposition by collisional transport, and a micro-deposition topography by collisionless transport. Our multi-scale simulation consists of particle-in-cell and Monte Carlo collision method (PIC-MCC) magnetron plasma simulation and Monte Carlo macro/microfilm deposition simulation. Thompson energy distribution and cosine angular distribution are used for the kinetic energy distribution and for the angular flux distribution of the sputtered atoms, respectively. A variable hard sphere (VHS) model is used to calculate the collision cross section of sputtered atoms and an equi-volume rate model (EVRM) is used to represent evolving film surface. The target erosion profiles are expected from the ion current density distribution on the sputter target simulated by two-dimensional PIC-MCC magnetron plasma simulator, and these profiles are compared with the experimental results. We present a discussion about the optimum detection range for the quasi-steady state of magnetron plasma in PIC-MCC simulation. Macro/microfilm deposition simulator predicts the macrofilm uniformity over the wafer and the micro-deposition topography in the micro-holes. Finally, we present a new algorithm, which can generate an asymmetric angular flux distribution, based on Monte Carlo method for microfilm deposition simulation. (C) 2004 Elsevier B.V. All rights reserved. | - |
dc.language | English | - |
dc.publisher | ELSEVIER SCIENCE SA | - |
dc.subject | DISCHARGE | - |
dc.subject | ATOMS | - |
dc.title | Multi-scale simulation of plasma generation and film deposition in a circular type DC magnetron sputtering system | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.tsf.2004.08.038 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | THIN SOLID FILMS, v.475, no.1-2, pp.17 - 23 | - |
dc.citation.title | THIN SOLID FILMS | - |
dc.citation.volume | 475 | - |
dc.citation.number | 1-2 | - |
dc.citation.startPage | 17 | - |
dc.citation.endPage | 23 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000227268600005 | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Coatings & Films | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article; Proceedings Paper | - |
dc.subject.keywordPlus | DISCHARGE | - |
dc.subject.keywordPlus | ATOMS | - |
dc.subject.keywordAuthor | computer simulation | - |
dc.subject.keywordAuthor | particle-in-cell | - |
dc.subject.keywordAuthor | Monte Carlo collision | - |
dc.subject.keywordAuthor | plasma processing and deposition | - |
dc.subject.keywordAuthor | sputtering | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.