Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Suh, HW | - |
dc.contributor.author | Kim, GY | - |
dc.contributor.author | Jung, YS | - |
dc.contributor.author | Choi, WK | - |
dc.contributor.author | Byun, D | - |
dc.date.accessioned | 2024-01-21T05:33:22Z | - |
dc.date.available | 2024-01-21T05:33:22Z | - |
dc.date.created | 2021-09-01 | - |
dc.date.issued | 2005-02-15 | - |
dc.identifier.issn | 0021-8979 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/136735 | - |
dc.description.abstract | ZnO nanoblades and nanoflowers are synthesized using zinc acetate dihydrate Zn(CH3COO)(2).2H(2)O dissolved in distilled water by ultrasonic pyrolysis at 380-500 degreesC. Thermogravimetry-differential scanning calorimetry, x-ray diffraction, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, and low-temperature photoluminescence (PL) were used to characterize the thermal properties, crystalline and optical features of the ZnO nanostructures. The results showed that at 400 degreesC the formation of nanoblades resulted from the simultaneous precipitation and nucleation in zinc acetate precursor. At an elevated temperature of 450 degreesC, decomposition was almost advanced and thus the size of nanopetal became smaller and aggregates became larger by as much as 60 nm. The formation of aggregates is explained in terms of random nucleation model. Through PL measurement, nanoblade showed a strong near band-edge emission with negligible deep-level emission and free exciton band-gap energy E-g(0)=3.372 eV and Debye temperature beta=477+/-65 K by the fitting curve of free exciton peak as a function of temperature to Varshni equation, E-g(T)=E-g(0)-alphaT(2)/(beta+T), which are very close to bulk ZnO. (C) 2005 American Institute of Physics. | - |
dc.language | English | - |
dc.publisher | AMER INST PHYSICS | - |
dc.subject | LOW-TEMPERATURE GROWTH | - |
dc.subject | ZINC ACETATE | - |
dc.subject | THERMAL-DECOMPOSITION | - |
dc.subject | OPTICAL-PROPERTIES | - |
dc.subject | NANOPARTICLES | - |
dc.subject | FABRICATION | - |
dc.subject | FILMS | - |
dc.subject | PHOTOLUMINESCENCE | - |
dc.subject | NANOWIRES | - |
dc.subject | NANOBELTS | - |
dc.title | Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis | - |
dc.type | Article | - |
dc.identifier.doi | 10.1063/1.1849825 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | JOURNAL OF APPLIED PHYSICS, v.97, no.4 | - |
dc.citation.title | JOURNAL OF APPLIED PHYSICS | - |
dc.citation.volume | 97 | - |
dc.citation.number | 4 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000226841900072 | - |
dc.identifier.scopusid | 2-s2.0-13744249105 | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | LOW-TEMPERATURE GROWTH | - |
dc.subject.keywordPlus | ZINC ACETATE | - |
dc.subject.keywordPlus | THERMAL-DECOMPOSITION | - |
dc.subject.keywordPlus | OPTICAL-PROPERTIES | - |
dc.subject.keywordPlus | NANOPARTICLES | - |
dc.subject.keywordPlus | FABRICATION | - |
dc.subject.keywordPlus | FILMS | - |
dc.subject.keywordPlus | PHOTOLUMINESCENCE | - |
dc.subject.keywordPlus | NANOWIRES | - |
dc.subject.keywordPlus | NANOBELTS | - |
dc.subject.keywordAuthor | ZnO | - |
dc.subject.keywordAuthor | nanaoblade | - |
dc.subject.keywordAuthor | nanoflower | - |
dc.subject.keywordAuthor | ultrasonic pyrolysis | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.