Full metadata record

DC Field Value Language
dc.contributor.authorPark, YM-
dc.contributor.authorPark, YJ-
dc.contributor.authorKim, KM-
dc.contributor.authorLee, JI-
dc.contributor.authorYoo, KH-
dc.date.accessioned2024-01-21T05:40:40Z-
dc.date.available2024-01-21T05:40:40Z-
dc.date.created2021-09-05-
dc.date.issued2005-01-
dc.identifier.issn1386-9477-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/136868-
dc.description.abstractWe have investigated the optical properties of InAs self-assembled quantum dots (SAQDs) with the Si-doped GaAs barrier layer. Two types of samples are fabricated according to the position of the Si-doped GaAs layer. For type A samples the Si-doped GaAs layer is grown below the QDs, whereas for type B samples the Si-doped GaAs layer is grown above the QDs. For both types of samples the excited-state emissions caused by state filling are observed in photoluminescence (PL) spectra at high excitation power densities. The bandgap renormalization of QDs can be found from the shift of the PL peak energy. Particularly, for type A samples the Si atoms act as nucleation centers during the growth of InAs QDs on the Si-doped GaAs layer and affect the density and the size of the QDs. The Si-doped GaAs layer in type A samples has more effects on the properties of QDs, such as state filling and bandgap renormalization than those of type B samples. (C) 2004 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectABSORPTION-
dc.subjectPHOTOLUMINESCENCE-
dc.subjectSPECTROSCOPY-
dc.subjectTEMPERATURE-
dc.subjectTRANSITIONS-
dc.subjectTHRESHOLD-
dc.subjectISLANDS-
dc.subjectSTATES-
dc.subjectLASER-
dc.titleEffects of Si-doped GaAs layer on optical properties of InAs quantum dots-
dc.typeArticle-
dc.identifier.doi10.1016/j.physe.2004.09.007-
dc.description.journalClass1-
dc.identifier.bibliographicCitationPHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, v.25, no.4, pp.647 - 653-
dc.citation.titlePHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES-
dc.citation.volume25-
dc.citation.number4-
dc.citation.startPage647-
dc.citation.endPage653-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000226187900046-
dc.identifier.scopusid2-s2.0-10044258516-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusABSORPTION-
dc.subject.keywordPlusPHOTOLUMINESCENCE-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusTRANSITIONS-
dc.subject.keywordPlusTHRESHOLD-
dc.subject.keywordPlusISLANDS-
dc.subject.keywordPlusSTATES-
dc.subject.keywordPlusLASER-
dc.subject.keywordAuthorquantum dots-
dc.subject.keywordAuthorSi-doped GaAs layer-
dc.subject.keywordAuthorstate filling-
dc.subject.keywordAuthorbandgap normalization-
Appears in Collections:
KIST Article > 2005
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE