Full metadata record

DC Field Value Language
dc.contributor.authorPark, KY-
dc.contributor.authorLee, JW-
dc.contributor.authorAhn, KH-
dc.contributor.authorMaeng, SK-
dc.contributor.authorHwang, JH-
dc.contributor.authorSong, KG-
dc.date.accessioned2024-01-21T07:33:41Z-
dc.date.available2024-01-21T07:33:41Z-
dc.date.created2021-09-02-
dc.date.issued2004-03-
dc.identifier.issn1061-4303-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/137822-
dc.description.abstractA pilot-scale facility integrated with an ozonation unit was built to investigate the feasibility of using ozone-disintegration byproducts of wasted biomass as a carbon source for denitrification. Ozonation of biomass resulted in mass reduction by mineralization as well as by ozone-disintegrated biosolids recycling. Approximately 50% of wasted solids were recovered as available organic matter (ozonolysate), which included nonsettleable microparticles and soluble fractions. Microparticles were observed in abundance at relatively low levels of ozone doses, while soluble fractions became dominant at higher levels, of ozone doses in ozone-disintegrated organics. Batch denitrification experiments showed that the ozonolysate could be used as a carbon source with a maximum denitrification rate of 3.66 mg nitrogen (N)/g volatile suspended solids (VSS).h. Ozonolysate was also proven to enhance total nitrogen removal efficiency in the pilot-scale treatment facility. An optimal chemical oxygen demand (COD)-to-nitrogen ratio for complete denitrification was estimated as 5.13 g COD/g N. The nitrogen-removal performance of the modified intermittently decanted extended aeration process dependent on an external carbon supply could be described as a function of solids retention time.-
dc.languageEnglish-
dc.publisherWATER ENVIRONMENT FEDERATION-
dc.subjectACTIVATED-SLUDGE PROCESS-
dc.subjectSEWAGE-SLUDGE-
dc.subjectDENITRIFICATION-
dc.subjectENHANCEMENT-
dc.subjectBIOSOLIDS-
dc.subjectOZONATION-
dc.titleOzone disintegration of excess biomass and application to nitrogen removal-
dc.typeArticle-
dc.identifier.doi10.2175/106143004X141690-
dc.description.journalClass1-
dc.identifier.bibliographicCitationWATER ENVIRONMENT RESEARCH, v.76, no.2, pp.162 - 167-
dc.citation.titleWATER ENVIRONMENT RESEARCH-
dc.citation.volume76-
dc.citation.number2-
dc.citation.startPage162-
dc.citation.endPage167-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000221290800010-
dc.identifier.scopusid2-s2.0-3242756914-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalWebOfScienceCategoryLimnology-
dc.relation.journalWebOfScienceCategoryWater Resources-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.relation.journalResearchAreaMarine & Freshwater Biology-
dc.relation.journalResearchAreaWater Resources-
dc.type.docTypeArticle-
dc.subject.keywordPlusACTIVATED-SLUDGE PROCESS-
dc.subject.keywordPlusSEWAGE-SLUDGE-
dc.subject.keywordPlusDENITRIFICATION-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordPlusBIOSOLIDS-
dc.subject.keywordPlusOZONATION-
dc.subject.keywordAuthordenitrification-
dc.subject.keywordAuthordisintegration-
dc.subject.keywordAuthorcarbon source-
dc.subject.keywordAuthorozonation-
dc.subject.keywordAuthorwasted biomass-
Appears in Collections:
KIST Article > 2004
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE