Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts

Authors
Kim, JHSuh, DJPark, TJKim, KL
Issue Date
2000-05-01
Publisher
ELSEVIER SCIENCE BV
Citation
APPLIED CATALYSIS A-GENERAL, v.197, no.2, pp.191 - 200
Abstract
CO2 reforming of CH4 was carried out over Ni-alumina aerogel catalysts prepared with various Ni loadings. The preparation of alumina supported Ni catalysts via sol-gel synthesis and subsequent supercritical drying led to the formation of very small metal particles, which are evenly distributed over the alumina support. The activity of the aerogel catalysts increased along with increasing metal loading, and eventually, the SAA25 (0.25 in Ni/Al mole ratio) catalyst exhibited the high activity comparable to that of a 5 wt.% Ru/alumina catalyst (ESCAT44, Engelhard). Compared to the alumina-supported Ni catalyst prepared by conventional impregnation method, Ni-alumina aerogel catalysts showed a remarkably low coking rate due to highly dispersed metal particles. From TEM micrograph studies, it was observed that the formation of filamentous carbon was significantly influenced by the metal particle size and proceeded mostly over the metal particles larger than 7 nm. The loss of catalytic activity at 973 K was mainly caused by coke deposition and sintering. (C) 2000 Elsevier Science B.V. All rights reserved.
Keywords
CARBON-DIOXIDE; NICKEL-CATALYSTS; SYNTHESIS GAS; SUPPORTED RHODIUM; METHANE; DEACTIVATION; OXIDATION; SILICA; CARBON-DIOXIDE; NICKEL-CATALYSTS; SYNTHESIS GAS; SUPPORTED RHODIUM; METHANE; DEACTIVATION; OXIDATION; SILICA; methane; carbon dioxide; reforming; sol-gel; aerogel; nickel; alumina; metal particle size; deactivation; filamentous carbon
ISSN
0926-860X
URI
https://pubs.kist.re.kr/handle/201004/141392
DOI
10.1016/S0926-860X(99)00487-1
Appears in Collections:
KIST Article > 2000
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE