Full metadata record

DC Field Value Language
dc.contributor.authorHa, Geon-Soo-
dc.contributor.authorRashid, Md Al Mamunur-
dc.contributor.authorOh, Da Hae-
dc.contributor.authorHa, Jeong-Myeong-
dc.contributor.authorYoo, Chun-Jae-
dc.contributor.authorJeon, Byong-Hun-
dc.contributor.authorKoo, Bonwook-
dc.contributor.authorJeong, Keunhong-
dc.contributor.authorKim, Kwang Ho-
dc.date.accessioned2024-01-25T01:30:51Z-
dc.date.available2024-01-25T01:30:51Z-
dc.date.created2024-01-25-
dc.date.issued2024-02-
dc.identifier.issn0956-053X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/148452-
dc.description.abstractTo achieve a sustainable and circular economy, developing effective plastic recycling methods is essential. Despite advances in the chemical recycling of plastic waste, modern industries require highly efficient and sustainable solutions to address environmental problems. In this study, we propose an efficient glycolysis strategy for post-consumer polyethylene terephthalate (PET) using deep eutectic solvents (DESs) to produce bis (2-hydroxyethyl) terephthalate (BHET) with high selectivity. Choline chloride (ChCl)- and urea-based DESs were synthesized using various metal salts and were tested for the glycolysis of PET waste; ChCl-Zn(OAc)(2) exhibited the best performance. The DES-containing solvent system afforded a complete PET conversion, producing BHET at a high yield (91.6%) under optimal reaction conditions. The degradation mechanism of PET and its interaction with DESs were systematically investigated using density functional theory-based calculations. Furthermore, an intuitive machine learning model was developed to predict the PET conversion and BHET selectivity for different DES compositions. Our findings demonstrate that the DES-catalyzed glycolysis of post-consumer PET could enable the development of a sustainable chemical recycling process, providing insights to identify the new design of DESs for plastic decomposition.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titleIntegrating experimental and computational approaches for deep eutectic solvent-catalyzed glycolysis of post-consumer polyethylene terephthalate-
dc.typeArticle-
dc.identifier.doi10.1016/j.wasman.2023.12.028-
dc.description.journalClass1-
dc.identifier.bibliographicCitationWaste Management, v.174, pp.411 - 419-
dc.citation.titleWaste Management-
dc.citation.volume174-
dc.citation.startPage411-
dc.citation.endPage419-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001138792000001-
dc.identifier.scopusid2-s2.0-85179844154-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.type.docTypeArticle-
dc.subject.keywordPlusDENSITY-FUNCTIONAL THEORY-
dc.subject.keywordPlusPOLY(ETHYLENE-TEREPHTHALATE)-
dc.subject.keywordPlusATOMS-
dc.subject.keywordAuthorPolyethylene terephthalate-
dc.subject.keywordAuthorGlycolysis-
dc.subject.keywordAuthorDeep eutectic solvent-
dc.subject.keywordAuthorBis(2-hydroxyethyl) terephthalate-
dc.subject.keywordAuthorDensity functional theory-
dc.subject.keywordAuthorRandom forest model-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE