Full metadata record

DC Field Value Language
dc.contributor.authorSong, Minju-
dc.contributor.authorKim, Yoonkyum-
dc.contributor.authorBaek, Du San-
dc.contributor.authorKim, Ho Young-
dc.contributor.authorGu, Da Hwi-
dc.contributor.authorLi, Haiyang-
dc.contributor.authorCunning, Benjamin V.-
dc.contributor.authorYang, Seong Eun-
dc.contributor.authorHeo, Seung Hwae-
dc.contributor.authorLee, Seunghyun-
dc.contributor.authorKim, Minhyuk-
dc.contributor.authorLim, June Sung-
dc.contributor.authorJeong, Hu Young-
dc.contributor.authorYoo, Jung-Woo-
dc.contributor.authorJoo, Sang Hoon-
dc.contributor.authorRuoff, Rodney S.-
dc.contributor.authorKim, Jin Young-
dc.contributor.authorSon, Jae Sung-
dc.date.accessioned2024-01-25T05:00:56Z-
dc.date.available2024-01-25T05:00:56Z-
dc.date.created2024-01-25-
dc.date.issued2023-12-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/148463-
dc.description.abstractThree-dimensional (3D) microprinting is considered a next-generation manufacturing process for the production of microscale components; however, the narrow range of suitable materials, which include mainly polymers, is a critical issue that limits the application of this process to functional inorganic materials. Herein, we develop a generalised microscale 3D printing method for the production of purely inorganic nanocrystal-based porous materials. Our process is designed to solidify all-inorganic nanocrystals via immediate dispersibility control and surface linking-induced interconnection in the nonsolvent linker bath and thereby creates multibranched gel networks. The process works with various inorganic materials, including metals, semiconductors, magnets, oxides, and multi-materials, not requiring organic binders or stereolithographic equipment. Filaments with a diameter of sub-10 mu m are printed into designed complex 3D microarchitectures, which exhibit full nanocrystal functionality and high specific surface areas as well as hierarchical porous structures. This approach provides the platform technology for designing functional inorganics-based porous materials. 3D microprinting is considered a next generation manufacturing process for microscale components. Here, authors develop a generalised microscale 3D printing method to produce purely inorganic nanocrystal-linked porous materials that exhibit excellent functionality and hierarchical porosity.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.title3D microprinting of inorganic porous materials by chemical linking-induced solidification of nanocrystals-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-023-44145-7-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNature Communications, v.14, no.1-
dc.citation.titleNature Communications-
dc.citation.volume14-
dc.citation.number1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001128854200026-
dc.identifier.scopusid2-s2.0-85180260899-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusCOLLOIDAL NANOCRYSTALS-
dc.subject.keywordPlusAEROGELS-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusGELS-
dc.subject.keywordPlusAU-
dc.subject.keywordPlusGENERATION-
dc.subject.keywordPlusPD-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE