Full metadata record

DC Field Value Language
dc.contributor.authorShin, Jeong-Woong-
dc.contributor.authorKim, Dong-Je-
dc.contributor.authorJang, Tae-Min-
dc.contributor.authorHan, Won Bae-
dc.contributor.authorLee, Joong Hoon-
dc.contributor.authorKo, Gwan-Jin-
dc.contributor.authorYang, Seung Min-
dc.contributor.authorRajaram, Kaveti-
dc.contributor.authorHan, Sungkeun-
dc.contributor.authorKang, Heeseok-
dc.contributor.authorLim, Jun Hyeon-
dc.contributor.authorEom, Chan-Hwi-
dc.contributor.authorBandodkar, Amay J.-
dc.contributor.authorMin, Hanul-
dc.contributor.authorHwang, Suk-Won-
dc.date.accessioned2024-02-13T05:00:15Z-
dc.date.available2024-02-13T05:00:15Z-
dc.date.created2024-02-13-
dc.date.issued2024-02-
dc.identifier.issn2311-6706-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/148600-
dc.description.abstractSubstrates or encapsulants in soft and stretchable for-mats are key components for transient, bioresorbable electronic systems; however, elastomeric polymers with desired mechanical and biochemi-cal properties are very limited compared to non-transient counterparts. Here, we introduce a bioresorbable elastomer, poly(glycolide-co-epsilon-caprolactone) (PGCL), that contains excellent material properties including high elongation-at-break (< 1300%), resilience and toughness, and tunable dissolution behaviors. Exploitation of PGCLs as polymer matrices, in combination with conducing polymers, yields stretchable, conductive composites for degradable interconnects, sensors, and actuators, which can reliably function under external strains. Integration of device components with wireless modules demonstrates elastic, transient electronic suture system with on-demand drug delivery for rapid recovery of post-surgical wounds in soft, time-dynamic tissues.-
dc.languageEnglish-
dc.publisherSHANGHAI JIAO TONG UNIV PRESS-
dc.titleHighly Elastic, Bioresorbable Polymeric Materials for Stretchable, Transient Electronic Systems-
dc.typeArticle-
dc.identifier.doi10.1007/s40820-023-01268-2-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNano-Micro Letters, v.16, no.1-
dc.citation.titleNano-Micro Letters-
dc.citation.volume16-
dc.citation.number1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001155726200001-
dc.identifier.scopusid2-s2.0-85183734697-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusDEVICES-
dc.subject.keywordPlusPOLY(GLYCOLIDE-CO-CAPROLACTONE)-
dc.subject.keywordPlusDEGRADATION-
dc.subject.keywordPlusELASTOMERS-
dc.subject.keywordPlusCOPOLYMERS-
dc.subject.keywordPlusWIRELESS-
dc.subject.keywordPlusTENSILE-
dc.subject.keywordPlusSUTURE-
dc.subject.keywordPlusSILK-
dc.subject.keywordAuthorBiodegradable elastomer-
dc.subject.keywordAuthorConductive polymer composites-
dc.subject.keywordAuthorBiomedical device-
dc.subject.keywordAuthorTransient electronics-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE