Full metadata record

DC Field Value Language
dc.contributor.authorVenkateswarlu, Sada-
dc.contributor.authorKim, Sooyeon-
dc.contributor.authorBalamurugan, Mani-
dc.contributor.authorSon, Younghu-
dc.contributor.authorYoon, Minyoung-
dc.contributor.authorNam, Ki Tae-
dc.contributor.authorHan, Sang Soo-
dc.contributor.authorKim, Myung Jong-
dc.date.accessioned2024-02-13T05:30:04Z-
dc.date.available2024-02-13T05:30:04Z-
dc.date.created2024-02-13-
dc.date.issued2024-05-
dc.identifier.issn0926-3373-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/148609-
dc.description.abstractAn in-situ growth of icosahedral (IC) Pd nanoparticles (NPs) on boron nitride nanotubes (BNNTs) is explored with an external surfactant and reducing agent-free strategy. The IC-Pd@BNNT catalysts show an ultrahigh current density of over - 1000 mA cm-2 with a low overpotential of 199 mV for the hydrogen evolution reaction (HER). At - 20 mA cm-2, the overpotential was as low as 15.7 mV in an acidic medium, which is superior than commercial Pd/C (62.6 mV), and Pt/C (29.4 mV). Moreover, the HER activity of the IC-Pd@BNNT catalysts is maintained even after an accelerated durability test of 40,000 cycles, indicating that the BNNTs are served as a durable support, maintaining the structural integrity of the catalyst. Density functional theory (DFT) calculations confirm that the IC-Pd on the BNNT support with vacancy defects is highly stable and HER active. From the Gas chromatography H2 gas was quantified, and the Faradaic efficiency was achieved to 98.96%.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleBoron nitride nanotubes supported icosahedral Pd nanoparticles: Enabling ultrahigh current density-superior hydrogen evolution activity and theoretical insights-
dc.typeArticle-
dc.identifier.doi10.1016/j.apcatb.2023.123609-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Catalysis B: Environment and Energy, v.345-
dc.citation.titleApplied Catalysis B: Environment and Energy-
dc.citation.volume345-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001153528600001-
dc.identifier.scopusid2-s2.0-85181809746-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusFUNCTIONAL THEORY-
dc.subject.keywordPlusOXYGEN REDUCTION-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusALLOY-
dc.subject.keywordAuthorBoron nitride nanotubes-
dc.subject.keywordAuthorIcosahedral Pd nanoparticles-
dc.subject.keywordAuthorSolvothermal synthesis-
dc.subject.keywordAuthorHydrogen evolution reaction-
dc.subject.keywordAuthorDensity functional theory-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE