Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Jae-Hyuk-
dc.contributor.authorNa, Wonjin-
dc.contributor.authorYu, Woong-Ryeol-
dc.date.accessioned2024-02-14T01:30:12Z-
dc.date.available2024-02-14T01:30:12Z-
dc.date.created2024-02-14-
dc.date.issued2023-03-
dc.identifier.issn0965-0393-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/148617-
dc.description.abstractSignificant variations in the tensile strength of unidirectional (UD) fiber-reinforced composites are frequently observed due to randomness in the fiber arrays. Herein, we propose a novel method for predicting tensile strength capable of quantifying uncertainty based on a new recurrence relation for fiber fracture propagation and a determination algorithm for the fracture sequence for random fiber arrays (RFAs). We performed finite element simulations, calculating the stress concentration factor (SCF) for UD composites with various RFAs. Then, we trained an artificial neural network with the obtained SCF data and used it to predict the SCF for composites with an arbitrary RFA. The tensile strength of UD composites was predicted over a range of values, demonstrating that accuracy was superior to conventional prediction methods.-
dc.languageEnglish-
dc.publisherInstitute of Physics Publishing-
dc.titleMachine learning-assisted modelling of stress concentration factor of unidirectional fiber composites for predicting their tensile strength-
dc.typeArticle-
dc.identifier.doi10.1088/1361-651x/acaaf8-
dc.description.journalClass1-
dc.identifier.bibliographicCitationModelling and Simulation in Materials Science and Engineering, v.31, no.2-
dc.citation.titleModelling and Simulation in Materials Science and Engineering-
dc.citation.volume31-
dc.citation.number2-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000902351200001-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaEngineering & Materials Science-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalResearchAreaHomogenization-
dc.subject.keywordPlusARTIFICIAL NEURAL-NETWORK-
dc.subject.keywordPlusMULTIPLE LINEAR-REGRESSION-
dc.subject.keywordPlusCOMPRESSIVE STRENGTH-
dc.subject.keywordPlusCOMPUTED-TOMOGRAPHY-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusFAILURE-
dc.subject.keywordPlusFRACTURE-
dc.subject.keywordPlusARRANGEMENT-
dc.subject.keywordPlusPOROSITY-
dc.subject.keywordAuthorunidirectional composite-
dc.subject.keywordAuthortensile strength-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthorartificial neural network-
dc.subject.keywordAuthorstress concentration factor-
dc.subject.keywordAuthorrandom fiber array-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE