Full metadata record

DC Field Value Language
dc.contributor.authorNauman, Asad-
dc.contributor.authorKhaliq, Hafiz Saad-
dc.contributor.authorChoi, Jun-Chan-
dc.contributor.authorLee, Jae-Won-
dc.contributor.authorKim, Hak-Rin-
dc.date.accessioned2024-02-22T06:30:10Z-
dc.date.available2024-02-22T06:30:10Z-
dc.date.created2024-02-22-
dc.date.issued2024-02-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/149301-
dc.description.abstractThe prompt visual response is considered to be a highly intuitive tenet among sensors. Therefore, plasmomechanical strain sensors, which exhibit dynamic structural color changes, have recently been developed by using mechanical stimulus-based elastomeric substrates for wearable sensors. However, the reported plasmomechanical strain sensors either lack directional sensitivity or require complex signal processing and device design strategies to ensure anisotropic optical responses. To the best of our knowledge, there have been no reports on utilizing anisotropic mechanical substrates to obtain directional optical responses. Herein, we propose an anisotropic plasmomechanical sensor to distinguish between the applied force direction and the force magnitude. We employ a simple strain-engineered topological elastomer to mechanically transform closely packed metallic nanoparticles (NPs) into anisotropic directional rearrangements depending on the applied force direction. The proposed structure consists of a heterogeneous-modulus elastomer that exhibits a highly direction-dependent Poisson effect owing to the periodically line-patterned local strain redistribution occurring due to the same magnitude of applied external force. Consequently, the reorientation of the self-assembled gold (Au)-NP array manifests dual anisotropy, i.e., force- and polarization-direction-dependent plasmonic coupling. The cost-effectiveness and simple design of our proposed heterogeneous-modulus platform pave the way for numerous optical applications based on dynamic transformation and topological inhomogeneities.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleTopologically Engineered Strain Redistribution in Elastomeric Substrates for Dually Tunable Anisotropic Plasmomechanical Responses-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.3c13818-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.16, no.5, pp.6337 - 6347-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume16-
dc.citation.number5-
dc.citation.startPage6337-
dc.citation.endPage6347-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001158590800001-
dc.identifier.scopusid2-s2.0-85184657283-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusSURFACE-PLASMON RESONANCE-
dc.subject.keywordPlusCOLOR-
dc.subject.keywordPlusSENSOR-
dc.subject.keywordPlusNANOSTRUCTURES-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordPlusPATCHES-
dc.subject.keywordPlusARRAYS-
dc.subject.keywordAuthorstretchable tensile sensor-
dc.subject.keywordAuthorplasmomechanical responses-
dc.subject.keywordAuthordirectional sensing-
dc.subject.keywordAuthorheterogeneous modulus-
dc.subject.keywordAuthoranisotropic strain sensor-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE