Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Park, Jaeyoung | - |
dc.contributor.author | Hoang Giang, Pham | - |
dc.contributor.author | Kim, Jongchan | - |
dc.contributor.author | Khanh Nguyen, Quang | - |
dc.contributor.author | Cho, Sangho | - |
dc.contributor.author | Mo Sung, Myung | - |
dc.date.accessioned | 2024-03-11T09:00:05Z | - |
dc.date.available | 2024-03-11T09:00:05Z | - |
dc.date.created | 2024-03-11 | - |
dc.date.issued | 2024-06 | - |
dc.identifier.issn | 0169-4332 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/149450 | - |
dc.description.abstract | Transparent electrodes and passivation layers find extensive application in optoelectronic devices such as light-emitting diodes, solar cell. Integrating transparent conductive and gas diffusion barrier layers into a unified component holds promise for enhancing device performance and cost-effectiveness. However, research on these dual-function materials remains relatively scarce. Here, we introduce an innovative hybrid superlattice composed of ZnO and self-assembled monolayers, designed to function simultaneously as transparent conductive and gas diffusion barrier. Fabricated using low-temperature atomic layer deposition and molecular layer deposition techniques, the hybrid superlattice exhibited robust electric conductivity (surpassing 1400 S cm-1), exceptional moisture barrier characteristics (water vapor transmission rate < 4 × 10-7 g m-2 day-1), and remarkable flexibility. We systematically investigated the significant electrical improvement, attributing it to the formation of a well-defined amorphous/crystalline phase-composite structure in the ZnO nanolayer. Moreover, the organic layers in the superlattice enhance resilience against environmental degradation and mechanical deformation by forming a multilayered structure that effectively decouples defects in the underlying layers. These compelling features position the hybrid superlattice as a promising candidate for transparent conductive gas diffusion barriers, with diverse applications in emerging optoelectronics. | - |
dc.language | English | - |
dc.publisher | Elsevier BV | - |
dc.title | Highly conductive and flexible transparent hybrid superlattices with gas-barrier properties: Implications in optoelectronics | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.apsusc.2024.159850 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Applied Surface Science, v.658 | - |
dc.citation.title | Applied Surface Science | - |
dc.citation.volume | 658 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 001209963300001 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Coatings & Films | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | THIN-FILMS | - |
dc.subject.keywordPlus | OPTICAL-PROPERTIES | - |
dc.subject.keywordPlus | ENCAPSULATION | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | PERMEATION | - |
dc.subject.keywordPlus | ATOMIC LAYER DEPOSITION | - |
dc.subject.keywordPlus | AL-DOPED ZNO | - |
dc.subject.keywordAuthor | Encapsulation | - |
dc.subject.keywordAuthor | Low -temperature deposition | - |
dc.subject.keywordAuthor | Atomic layer deposition | - |
dc.subject.keywordAuthor | Molecular layer deposition | - |
dc.subject.keywordAuthor | Optoelectronics | - |
dc.subject.keywordAuthor | Transparent conductive films | - |
dc.subject.keywordAuthor | Transparent conductive oxides | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.