Full metadata record

DC Field Value Language
dc.contributor.authorLee, Jinsil-
dc.contributor.authorShin, Yonghun-
dc.contributor.authorKim, Taeyun-
dc.contributor.authorChoi, Wooseon-
dc.contributor.authorJung, Min-Hyoung-
dc.contributor.authorKim, Young-Min-
dc.contributor.authorYoon, Kyung Joong-
dc.contributor.authorJeong, Hu Young-
dc.contributor.authorLee, Donghwa-
dc.contributor.authorJoo, Jong Hoon-
dc.date.accessioned2024-03-21T07:30:10Z-
dc.date.available2024-03-21T07:30:10Z-
dc.date.created2024-03-21-
dc.date.issued2024-03-
dc.identifier.issn0897-4756-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/149495-
dc.description.abstractPerovskite-based materials are typically used as electrodes in solid oxide cells (SOCs) owing to their high catalytic activity in oxygen exchange reactions. The degradation of typical SOCs is a well-known phenomenon that is primarily attributed to the A-site cation redistribution within perovskite-based electrodes at elevated operating temperatures. To date, investigations of the degradation and stability of perovskite electrodes have predominantly focused on assessing thin-film electrodes under an open-circuit voltage. This study proposes a detailed degradation mechanism of electrodes based on bulk-dense materials under the operating conditions of an actual solid oxide fuel cell. Our findings revealed that La0.6Sr0.4Co0.2Fe0.8O3-delta is decomposed into SrO, spinel phase ((CoFe)(3)O-4), and La-rich perovskite in the subsurface region under cathodic bias conditions. Additionally, the results of this study indicate that the phase decomposition associated with elements in the B-site must be considered to improve the enhancement of the stability and oxygen reduction reaction activity.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titlePhase Stability of Perovskite Oxide Electrodes under Operating Condition in Solid Oxide Fuel Cell-
dc.typeArticle-
dc.identifier.doi10.1021/acs.chemmater.3c03283-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemistry of Materials, v.36, no.6, pp.2933 - 2943-
dc.citation.titleChemistry of Materials-
dc.citation.volume36-
dc.citation.number6-
dc.citation.startPage2933-
dc.citation.endPage2943-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001184219500001-
dc.identifier.scopusid2-s2.0-85187576918-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusTHIN-FILM ELECTRODES-
dc.subject.keywordPlusOXYGEN REDUCTION-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusSURFACE MODIFICATION-
dc.subject.keywordPlusDOPANT SEGREGATION-
dc.subject.keywordPlusCATHODE MATERIALS-
dc.subject.keywordPlusLA0.6SR0.4CO0.2FE0.8O3-DELTA-
dc.subject.keywordPlusINTERFACE-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusEXCHANGE-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE