Full metadata record

DC Field Value Language
dc.contributor.authorHu, Chuan-
dc.contributor.authorLee, Young Jun-
dc.contributor.authorMa, Yichang-
dc.contributor.authorZhang, Xiaohua-
dc.contributor.authorJung, Seung Won-
dc.contributor.authorHwang, Hyewon-
dc.contributor.authorCho, Hyeon Keun-
dc.contributor.authorKim, Myeong-Geun-
dc.contributor.authorYoo, Sung Jong-
dc.contributor.authorZhang, Qiugen-
dc.contributor.authorLee, Young Moo-
dc.date.accessioned2024-03-21T07:30:13Z-
dc.date.available2024-03-21T07:30:13Z-
dc.date.created2024-03-21-
dc.date.issued2024-03-
dc.identifier.issn2380-8195-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/149496-
dc.description.abstractRational design of membrane electrode assemblies is crucial to the production of high-performance and durable anion exchange membrane (AEM) water electrolyzers (AEMWEs). Here, we propose a facile method to prepare patterned membranes by casting a polymer solution onto the surface of commercially available monocrystalline silicon plates with pyramid-shaped patterns on their surface. The prepared membrane shows a 39% improvement in water permeability and a 23% enhancement in the electrochemical surface area compared with a flat membrane with the same catalyst loading. The patterned AEM achieves an unprecedented current density of 17.5 A cm(-2)@2.0 V and mass activity of 26.3 A mg(IrO2)(-1) using a catalyst-coated membrane method. Moreover, the patterned AEM-based AEMWE can be operated at 1.5 A cm(-2) and 60 degrees C for 1000 h with a relatively low voltage decay rate of 22 mu V h(-1). These results demonstrate that patterned membranes have promising application capability for the next generation of hydrogen-production devices.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleAdvanced Patterned Membranes for Efficient Alkaline Membrane Electrolyzers-
dc.typeArticle-
dc.identifier.doi10.1021/acsenergylett.4c00207-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Energy Letters, v.9, no.3, pp.1219 - 1227-
dc.citation.titleACS Energy Letters-
dc.citation.volume9-
dc.citation.number3-
dc.citation.startPage1219-
dc.citation.endPage1227-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001177517800001-
dc.identifier.scopusid2-s2.0-85186485725-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusANION-EXCHANGE MEMBRANES-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusPERFORMANCE-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE