Full metadata record

DC Field Value Language
dc.contributor.authorVerdianto, Ariono-
dc.contributor.authorJung, Heechul-
dc.contributor.authorKim, Sang-Ok-
dc.date.accessioned2024-03-21T08:30:08Z-
dc.date.available2024-03-21T08:30:08Z-
dc.date.created2024-03-21-
dc.date.issued2024-03-
dc.identifier.issn2590-0498-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/149506-
dc.description.abstractElemental germanium (Ge) is considered a high-capacity anode material for lithium-ion batteries (LIBs). However, it suffers from severe capacity degradation and inherent material instability owing to inevitable volumetric changes during the alloying/dealloying reactions with lithium. In this study, we report a hierarchical architecture comprising Ge nanoparticles in electrospun carbon fibers (Ge@C) coated with an in situ grown NiCo2O4 (NCO) layer to enhance the structural stability and electrochemical reversibility of Ge. The Ge@C@NCO fibers possess unique features, including well-dispersed Ge in nitrogen-doped porous carbon network that serves as a conductive volumetric buffer. This configuration allows for effective volume accommodation and improved electronic conductivity. Moreover, the porous NCO contributed to enhanced reversible capacity and rapid ionic transfer during electrochemical reactions. As a result, the Ge@C@NCO anode exhibited an ultrahigh specific capacity of 981.7 mAh g ? 1 and excellent capacity retention over 200 cycles under a current density of 1 A g ? 1, indicating superior lithium storage properties compared to pure Ge. Additionally, it retained approximately 80 % of initial capacity after 300 cycles even at 5 A g ? 1, demonstrating fast charging capability. The outstanding performance of this hierarchical structure presents a new path for designing alloying-based anodes for highenergy-density LIBs.-
dc.languageEnglish-
dc.publisherElsevier-
dc.titleSurface modification of electrospun nitrogen-doped Ge@C fiber with highly porous NiCo2O4 layer as high-performance lithium-ion battery anode-
dc.typeArticle-
dc.identifier.doi10.1016/j.mtadv.2024.100472-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMaterials Today Advances, v.21-
dc.citation.titleMaterials Today Advances-
dc.citation.volume21-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001179377000001-
dc.identifier.scopusid2-s2.0-85183948823-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusSOLVOTHERMAL SYNTHESIS-
dc.subject.keywordPlusCARBON NANOTUBES-
dc.subject.keywordPlusHIGH-ENERGY-
dc.subject.keywordPlusGERMANIUM-
dc.subject.keywordPlusNANOWIRES-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusHOLLOW-
dc.subject.keywordPlusHYBRID-
dc.subject.keywordAuthorGermanium-
dc.subject.keywordAuthorNitrogen-doped carbon fiber-
dc.subject.keywordAuthorElectrospinning-
dc.subject.keywordAuthorSurface modification-
dc.subject.keywordAuthorLithium-ion batteries-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE