Full metadata record

DC Field Value Language
dc.contributor.authorDidychenko, Denys-
dc.contributor.authorOleksiy, Kovalchuk-
dc.contributor.authorUddin, Siam-
dc.contributor.authorSee, Sungjae-
dc.contributor.authorSong, Yong-Won-
dc.date.accessioned2024-03-25T07:00:07Z-
dc.date.available2024-03-25T07:00:07Z-
dc.date.created2024-03-25-
dc.date.issued2024-04-
dc.identifier.issn0925-3467-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/149528-
dc.description.abstractTransfer-free direct synthesis of graphene (Gf) has been anticipated to develop small-footprint ultrafast optical devices that rely on the excellent nonlinearity of defect-suppressed Gf. Atomic carbon spraying (ACS) technique enables a direct and conformal growth of 3-dimensional (3D) Gf on the 3D surface of substrates by introducing a new ceramic catalyst. However, with the high density of grain boundaries retained in the resultant Gf nanocrystals, their unimpaired optical nonlinearity should be verified. We demonstrate a fiber ring femtosecond laser based on passive mode-locking of the ACS Gf synthesized on the side-polished surface of an optical fiber for the asymmetric nonlinear interaction of laser evanescent field and Gf. Widely operable chromatic dispersion range for the ACS Gf-based mode-locking is shown experimentally to tune the individual pulse energy. The ACS Gf manages a reliable interplay between the anomalous dispersion and optical nonlinearity of the laser cavity at high-intracavity power, resulting in dispersion-tolerant short pulse generation. Output pulse energy up to 9.05 nJ of the hyperbolic secant pulses is achieved with the extra-length of single mode fibers ranging from 30 to 250 m, ensuring the robust nonlinear operation of the ACS Gf.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleChromatic dispersion-tolerant mode-locking of directly synthesized graphene for the control of laser pulse energy-
dc.typeArticle-
dc.identifier.doi10.1016/j.optmat.2024.115259-
dc.description.journalClass1-
dc.identifier.bibliographicCitationOptical Materials, v.150-
dc.citation.titleOptical Materials-
dc.citation.volume150-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001216532300001-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryOptics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaOptics-
dc.type.docTypeArticle-
dc.subject.keywordPlusDOPED FIBER LASER-
dc.subject.keywordPlusLOCKED FIBER-
dc.subject.keywordPlusGAMMA-ALUMINA-
dc.subject.keywordPlusGENERATION-
dc.subject.keywordPlusNANOMATERIALS-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordAuthorGraphene-
dc.subject.keywordAuthorTransfer-free graphene-
dc.subject.keywordAuthorOptical nonlinearity-
dc.subject.keywordAuthorMode-locked laser-
dc.subject.keywordAuthorAtomic carbon spraying-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE