Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jamil, Sidra | - |
dc.contributor.author | Mudasar, Farhan | - |
dc.contributor.author | Yuan, Tiange | - |
dc.contributor.author | Fasehullah, Muhammad | - |
dc.contributor.author | Ali, Ghulam | - |
dc.contributor.author | Chae, Keun Hwa | - |
dc.contributor.author | Voznyy, Oleksandr | - |
dc.contributor.author | Zhan, Yiqiang | - |
dc.contributor.author | Xu, Maowen | - |
dc.date.accessioned | 2024-03-28T08:00:05Z | - |
dc.date.available | 2024-03-28T08:00:05Z | - |
dc.date.created | 2024-03-28 | - |
dc.date.issued | 2024-03 | - |
dc.identifier.issn | 1944-8244 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/149539 | - |
dc.description.abstract | Mn-rich P2-type layered oxide cathode materials suffer from severe capacity loss caused by detrimental phase transition and transition metal dissolution, making their implementation difficult in large-scale sodium-ion battery applications. Herein, we introduced a high-valent Sb5+ substitution, leading to a biphasic P2/O3 cathode that suppresses the P2-O2 phase transformation in the high-voltage condition attributed to the stronger Sb-O covalency that introduces extra electrons to the O atom, reducing oxygen loss from the lattices and improving structural stability, as confirmed by first-principle calculations. Besides, the enhanced Na+ diffusion kinetics and thermodynamics in the modified sample are associated with the enlarged lattice parameters. As a result, the proposed cathode delivers a discharge capacity of 142.6 mAh g(-1) at 0.1C between 1.5 and 4.3 V and excellent performance at a high mass loading of 8 mg cm(3 )with a specific capacity of 131 mAh g(-1) at 0.2C. Furthermore, it also possesses remarkable rate capability (90.3 mAh g(-1) at 5C), specifying its practicality in high-energy-density sodium-ion batteries. Hence, this work provides insights into incorporating high-valent dopants for high-performance Mn-rich cathodes. | - |
dc.language | English | - |
dc.publisher | American Chemical Society | - |
dc.title | Sb-Doped Biphasic P2/O3-Type Mn-Rich Layered Oxide Cathode Material for High-Performance Sodium-Ion Batteries | - |
dc.type | Article | - |
dc.identifier.doi | 10.1021/acsami.3c15667 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | ACS Applied Materials & Interfaces, v.16, no.12, pp.14669 - 14679 | - |
dc.citation.title | ACS Applied Materials & Interfaces | - |
dc.citation.volume | 16 | - |
dc.citation.number | 12 | - |
dc.citation.startPage | 14669 | - |
dc.citation.endPage | 14679 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 001187287300001 | - |
dc.identifier.scopusid | 2-s2.0-85188124630 | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | OXYGEN REDOX CHEMISTRY | - |
dc.subject.keywordPlus | HIGH-ENERGY | - |
dc.subject.keywordPlus | PHASE-TRANSITION | - |
dc.subject.keywordPlus | HIGH-CAPACITY | - |
dc.subject.keywordPlus | LONG-LIFE | - |
dc.subject.keywordPlus | NI | - |
dc.subject.keywordPlus | CO | - |
dc.subject.keywordPlus | NA2/3NI1/3MN2/3O2 | - |
dc.subject.keywordPlus | SUBSTITUTION | - |
dc.subject.keywordPlus | STABILITY | - |
dc.subject.keywordAuthor | high-valent dopants | - |
dc.subject.keywordAuthor | Mn-rich layered oxides | - |
dc.subject.keywordAuthor | P2/O3 biphasic structure | - |
dc.subject.keywordAuthor | robust oxygen framework | - |
dc.subject.keywordAuthor | sodium-ion batteries | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.