Full metadata record

DC Field Value Language
dc.contributor.authorPark, Jiheon-
dc.contributor.authorCho, Iaan-
dc.contributor.authorJeon, Hotae-
dc.contributor.authorLee, Youjin-
dc.contributor.authorZhang, Jian-
dc.contributor.authorLee, Dongwook-
dc.contributor.authorCho, Min Kyung-
dc.contributor.authorPreston, Daniel J.-
dc.contributor.authorShong, Bonggeun-
dc.contributor.authorKim, In Soo-
dc.contributor.authorLee, Won-Kyu-
dc.date.accessioned2024-04-11T01:30:10Z-
dc.date.available2024-04-11T01:30:10Z-
dc.date.created2024-04-11-
dc.date.issued2024-06-
dc.identifier.issn0935-9648-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/149609-
dc.description.abstractElectrocatalytic water splitting is crucial to generate clean hydrogen fuel, but implementation at an industrial scale remains limited due to dependence on expensive platinum (Pt)-based electrocatalysts. Here, an all-dry process to transform electrochemically inert bulk WS2 into a multidomain electrochemical catalyst that enables scalable and cost-effective implementation of the hydrogen evolution reaction (HER) in water electrolysis is reported. Direct dry transfer of WS2 flakes to a gold thin film deposited on a silicon substrate provides a general platform to produce the working electrodes for HER with tunable charge transfer resistance. By treating the mechanically exfoliated WS2 with sequential Ar-O-2 plasma, mixed domains of WS2, WO3, and tungsten oxysulfide form on the surfaces of the flakes, which gives rise to a superior HER with much greater long-term stability and steady-state activity compared to Pt. Using density functional theory, ultraefficient atomic sites formed on the constituent nanodomains are identified, and the quantification of atomic-scale reactivities and resulting HER activities fully support the experimental observations.-
dc.languageEnglish-
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.titleConversion of Layered WS2 Crystals into Mixed-Domain Electrochemical Catalysts by Plasma-Assisted Surface Reconstruction-
dc.typeArticle-
dc.identifier.doi10.1002/adma.202314031-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Materials, v.36, no.25-
dc.citation.titleAdvanced Materials-
dc.citation.volume36-
dc.citation.number25-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001196243500001-
dc.identifier.scopusid2-s2.0-85189210136-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusACTIVE EDGE SITES-
dc.subject.keywordPlusHYDROGEN EVOLUTION-
dc.subject.keywordPlusMONOLAYER MOS2-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusELECTROCATALYST-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusVACANCIES-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusDEFECTS-
dc.subject.keywordAuthorcatalytic materials-
dc.subject.keywordAuthorhydrogen evolution reaction-
dc.subject.keywordAuthorplasma treatment-
dc.subject.keywordAuthortransition metal chalcogenides-
dc.subject.keywordAuthorwater electrolysis-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE