Full metadata record

DC Field Value Language
dc.contributor.authorHong, Jaeyoung-
dc.contributor.authorKim, Juyoung-
dc.contributor.authorBae, Jee Hwan-
dc.contributor.authorJin, Haneul-
dc.contributor.authorLee, Su Kyong-
dc.contributor.authorLee, Kyu Hyoung-
dc.contributor.authorLee, Young-Su-
dc.contributor.authorChun, Dong Won-
dc.date.accessioned2024-04-24T07:39:21Z-
dc.date.available2024-04-24T07:39:21Z-
dc.date.created2024-02-22-
dc.date.issued2024-06-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/149708-
dc.description.abstractRadiation chemistry enables the synthesis of colloidal nanoparticles without chemical reducing agents, yielding metal nanoparticles via simple and direct processes. Aliphatic alcohols are widely used to promote the formation of nanoparticles in radiolytic synthesis by inhibiting the reoxidation of these metal nanoparticles by scavenging hydroxyl radicals. However, the role of the scavenger has been limited to simply accelerating the formation of the nanoparticles without altering their nature. Herein, the role of radical scavengers is investigated in determining the type of metal nanoparticles formed, with the scavenger concentration playing a crucial role. It is found that the addition of isopropyl alcohol controls the formation of hexagonal close-packed (hcp) palladium hydride (PdHx) nanoparticles that are previously synthesized for the first time via radiation chemistry by increasing the concentrations of hydrated electrons and hydrogen radicals. This discovery reveals a more active role for radical scavengers in radiolytic syntheses, and this strategy can be used for the cost-effective mass production of hcp PdHx nanoparticles.-
dc.languageEnglish-
dc.publisherJohn Wiley & Sons Ltd.-
dc.titleRevealing the Hidden Role of Radical Scavengers: Unraveling the Key to Tailoring the Formation of the hcp PdHx Phase in Graphene Liquid Cells-
dc.typeArticle-
dc.identifier.doi10.1002/adfm.202311293-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Functional Materials, v.34, no.23-
dc.citation.titleAdvanced Functional Materials-
dc.citation.volume34-
dc.citation.number23-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001160681000001-
dc.identifier.scopusid2-s2.0-85184506382-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusRADIOLYTIC SYNTHESIS-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusNUCLEATION-
dc.subject.keywordPlusCLUSTERS-
dc.subject.keywordPlusHYDRIDE-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusIRRADIATION-
dc.subject.keywordAuthorradical scavenger-
dc.subject.keywordAuthorradiolysis product-
dc.subject.keywordAuthorgraphene liquid cell-
dc.subject.keywordAuthorhcp palladium hydride-
dc.subject.keywordAuthorin situ TEM-
dc.subject.keywordAuthorradiation chemistry-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE