Full metadata record

DC Field Value Language
dc.contributor.authorPark, Eun Joo-
dc.contributor.authorJannasch, Patric-
dc.contributor.authorMiyatake, Kenji-
dc.contributor.authorBae, Chulsung-
dc.contributor.authorNoonan, Kevin-
dc.contributor.authorFujimoto, Cy-
dc.contributor.authorHoldcroft, Steven-
dc.contributor.authorVarcoe, John R.-
dc.contributor.authorHenkensmeier, Dirk-
dc.contributor.authorGuiver, Michael D.-
dc.contributor.authorKim, Yu Seung-
dc.date.accessioned2024-04-29T09:00:08Z-
dc.date.available2024-04-29T09:00:08Z-
dc.date.created2024-04-29-
dc.date.issued2024-06-
dc.identifier.issn0306-0012-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/149761-
dc.description.abstractAnion exchange polymers (AEPs) play a crucial role in green hydrogen production through anion exchange membrane water electrolysis. The chemical stability of AEPs is paramount for stable system operation in electrolysers and other electrochemical devices. Given the instability of aryl ether-containing AEPs under high pH conditions, recent research has focused on quaternized aryl ether-free variants. The primary goal of this review is to provide a greater depth of knowledge on the synthesis of aryl ether-free AEPs targeted for electrochemical devices. Synthetic pathways that yield polyaromatic AEPs include acid-catalysed polyhydroxyalkylation, metal-promoted coupling reactions, ionene synthesis via nucleophilic substitution, alkylation of polybenzimidazole, and Diels?Alder polymerization. Polyolefinic AEPs are prepared through addition polymerization, ring-opening metathesis, radiation grafting reactions, and anionic polymerization. Discussions cover structure?property?performance relationships of AEPs in fuel cells, redox flow batteries, and water and CO2 electrolysers, along with the current status of scale-up synthesis and commercialization.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleAryl ether-free polymer electrolytes for electrochemical and energy devices-
dc.typeArticle-
dc.identifier.doi10.1039/d3cs00186e-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Society Reviews, v.53, no.11, pp.5704 - 5780-
dc.citation.titleChemical Society Reviews-
dc.citation.volume53-
dc.citation.number11-
dc.citation.startPage5704-
dc.citation.endPage5780-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001208387200001-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeReview-
dc.subject.keywordPlusFUEL-CELL MEMBRANES-
dc.subject.keywordPlusRADIATION-GRAFTED MEMBRANES-
dc.subject.keywordPlusP-TERPHENYL POLY(BENZIMIDAZOLIUM)-
dc.subject.keywordPlusADDITION-TYPE POLYNORBORNENE-
dc.subject.keywordPlusQUATERNARY AMMONIUM CATIONS-
dc.subject.keywordPlusSTEP-GROWTH POLYMERIZATION-
dc.subject.keywordPlusION-EXCHANGE-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusANION-EXCHANGE MEMBRANES-
dc.subject.keywordPlusOPENING-METATHESIS POLYMERIZATION-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE