Full metadata record

DC Field Value Language
dc.contributor.authorRam, Swetarekha-
dc.contributor.authorKoshi, Namitha Anna-
dc.contributor.authorLee, Seung-Cheol-
dc.contributor.authorBhattacharjee, Satadeep-
dc.date.accessioned2024-05-02T05:30:06Z-
dc.date.available2024-05-02T05:30:06Z-
dc.date.created2024-05-02-
dc.date.issued2024-04-
dc.identifier.issn1932-7447-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/149785-
dc.description.abstractJanus MXenes, a new category of two-dimensional (2D) materials, show promising potential for advances in optoelectronics, spintronics, and nanoelectronics. Our theoretical investigations not only provide interesting insights but also highlight the promise of Janus MCrCT2 (M = Ti, Mo; T = O, F, OH) MXenes for future spintronic applications and highlight the need for their synthesis. Electronic structure analysis shows different metallic and semimetallic properties: MoCrCF2 exhibits metallic property, TiCrC(OH)(2) and MoCrCO2 exhibit near semimetallicity with spin polarization values of 61 and 86%, respectively, while TiCrCO2 and TiCrCF2 are completely half-metallic with 100% spin polarization at the Fermi level. All studied Janus MXenes exhibit intrinsic ferromagnetism, which is mainly attributed to the chromium (Cr) atoms, as shown by the spin density difference plots. Among them, the TiCrCO2 monolayer stands out with the highest exchange constant and ferromagnetic transition temperature (T-c). Notably, the O-terminated Janus MXenes exhibit weak perpendicular magnetic anisotropy, in contrast to the in-plane anisotropy observed for F and OH-terminated MXenes, making them particularly interesting for future spintronic applications, which we further demonstrate with micromagnetic simulation which reveal distinct current-induced switching behaviors in these Janus MXenes with different surface terminations.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleTuning the Electronic and Magnetic Properties of Double Transition Metal (MCrCT2, M = Ti, Mo) Janus MXenes for Enhanced Spintronics and Nanoelectronics-
dc.typeArticle-
dc.identifier.doi10.1021/acs.jpcc.4c00814-
dc.description.journalClass1-
dc.identifier.bibliographicCitationThe Journal of Physical Chemistry C, v.128, no.17, pp.7323 - 7333-
dc.citation.titleThe Journal of Physical Chemistry C-
dc.citation.volume128-
dc.citation.number17-
dc.citation.startPage7323-
dc.citation.endPage7333-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001205547200001-
dc.identifier.scopusid2-s2.0-85191040823-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlus2-DIMENSIONAL TITANIUM CARBIDE-
dc.subject.keywordPlusCURIE-TEMPERATURE-
dc.subject.keywordPlusFERROMAGNETISM-
dc.subject.keywordPlusMONOLAYER-
dc.subject.keywordPlusINTERCALATION-
dc.subject.keywordPlusANISOTROPY-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE