Full metadata record

DC Field Value Language
dc.contributor.authorKim, Dae Won-
dc.contributor.authorJung, Minji-
dc.contributor.authorShin, Dong Yun-
dc.contributor.authorKim, Namju-
dc.contributor.authorPark, Jaewoo-
dc.contributor.authorLee, Jung-Hoon-
dc.contributor.authorOh, Hyunchul-
dc.contributor.authorHong, Chang Seop-
dc.date.accessioned2024-05-23T06:30:05Z-
dc.date.available2024-05-23T06:30:05Z-
dc.date.created2024-05-23-
dc.date.issued2024-06-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/149889-
dc.description.abstractAdsorbent-based hydrogen storage systems offer a potential solution to current challenges in hydrogen storage, particularly those requiring high pressures or cryogenic temperatures. Specifically, the use of metal-organic frameworks (MOFs) featuring open metal sites that strongly adsorb hydrogen represents a promising strategy for near-ambient-temperature hydrogen storage. This study investigates the hydrogen storage properties of M2(dondc) (M = Mg2+, Co2+, and Ni2+), an extended version of MOF-74. Among this series, Ni2(dondc) exhibits the second-highest volumetric hydrogen capacity of 10.74 g L-1 at 298 K under pressure swing adsorption conditions (100 to 5 bar) at ambient temperatures. The superior hydrogen storage performance of Ni2(dondc) is attributed to its highly polarizable Ni open metal sites and a significant heat of adsorption of 12.2 kJ mol- 1. These findings are corroborated by temperature-programmed desorption spectroscopy and van der Waalscorrected density functional theory calculations. In addition to its exceptional hydrogen capacity, Ni2(dondc) exhibits robust structural stability and long-term durability, positioning it as a promising candidate for nearambient-temperature hydrogen storage applications.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleFine-tuned MOF-74 type variants with open metal sites for high volumetric hydrogen storage at near-ambient temperature-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2024.151500-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.489-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume489-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001220893600002-
dc.identifier.scopusid2-s2.0-85190999164-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusORGANIC FRAMEWORKS-
dc.subject.keywordPlusPOROUS MATERIALS-
dc.subject.keywordPlusH-2 BINDING-
dc.subject.keywordPlusDENSITY-
dc.subject.keywordPlusMG-
dc.subject.keywordPlusNI-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusCOSTS-
dc.subject.keywordPlusGAS-
dc.subject.keywordAuthorPorosity-
dc.subject.keywordAuthorHydrogen storage-
dc.subject.keywordAuthorPhysisorption-
dc.subject.keywordAuthorMetal-Organic frameworks-
dc.subject.keywordAuthorOpen metal sites-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE