Full metadata record

DC Field Value Language
dc.contributor.authorNamhee Kwon-
dc.contributor.authorSong, Seung Ho-
dc.contributor.authorJin, Junyoung-
dc.contributor.authorKim, Seunghwan-
dc.contributor.authorKim, Kitae-
dc.contributor.authorHwang, Gyu Weon-
dc.contributor.authorYi, Yeonjin-
dc.contributor.authorOh, Soong Ju-
dc.contributor.authorKoch, Norbert-
dc.contributor.authorKim, Yong-Hoon-
dc.contributor.authorHwang, Do Kyung-
dc.contributor.authorPark, Soohyung-
dc.date.accessioned2024-05-27T05:30:05Z-
dc.date.available2024-05-27T05:30:05Z-
dc.date.created2024-05-24-
dc.date.issued2024-08-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/149922-
dc.description.abstractPbS quantum dots capped by ethanedithiol (PbS QD-EDT) and tetrabutylammonium iodide (PbS QD-TBAI) and supported by different substrates were examined in terms of Fermi level pinning (FLP), gap states, and electron and hole barriers (Φe and Φh, respectively) using ultraviolet and low-energy inverse photoemission spectroscopy. The former analysis showed that TBAI and EDT differed in their ability to induce gap-state passivation, with the corresponding energy difference determined as 4.0 eV. Two FLP regimes were identified: at substrate work function (Фsub) < 4.0 eV, both ligands showed perfect FLP (S ? 0 for holes and electrons), whereas at Фsub > 4.0 eV, the pinning strength of PbS QD-EDT (S of Фb,h and Фb,e = 0.19 and 0.24, respectively) exceeded that of PbS QD-TBAI (S of Фb,h and Фb,e = 0.53 and 0.57, respectively). Thus, the gap states were more effectively passivated in the case of PbS QD-TBAI. Our results indicate the importance of considering FLP strength when working with high-work-function substrates for the design of optimized QD-based devices.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleThe influence of ligands passivation on strength of Fermi level pinning in the quantum dots interface-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2024.160235-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Surface Science, v.664-
dc.citation.titleApplied Surface Science-
dc.citation.volume664-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001243493900001-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusSTATES-
dc.subject.keywordPlusPHOTOTRANSISTORS-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusVALENCE-
dc.subject.keywordPlusGAP-
dc.subject.keywordPlusSOLAR-CELLS-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordAuthorEnergy level alignment-
dc.subject.keywordAuthorPhotoemission spectroscopy-
dc.subject.keywordAuthorLow-energy inverse photoemission-
dc.subject.keywordAuthorspectroscopy-
dc.subject.keywordAuthorPbS quantum dot-
dc.subject.keywordAuthorGap state-
dc.subject.keywordAuthorFermi level pinning-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE