Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tomar, Shalini | - |
dc.contributor.author | Bhadoria, Bhagirath Singh | - |
dc.contributor.author | Jeong, Hojin | - |
dc.contributor.author | Choi, Joon Hwan | - |
dc.contributor.author | Lee, Seung-Cheol | - |
dc.contributor.author | Bhattacharjee, Satadeep | - |
dc.date.accessioned | 2024-05-30T08:30:39Z | - |
dc.date.available | 2024-05-30T08:30:39Z | - |
dc.date.created | 2024-05-30 | - |
dc.date.issued | 2024-05 | - |
dc.identifier.issn | 1932-7447 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/149952 | - |
dc.description.abstract | Employing density functional theory, we delved into the comprehensive pathways for methane oxidation on the Pd single atom supported with CeO2(111) encompassing sequential methane dehydrogenation, O-2 dissociation, and oxidation processes. The introduction of a Pd atom into CeO2(111) led to a reduction in the barrier for CH4 dissociation to 0.50 eV. The methane dehydrogenation proceeded through a series of reactions: CH4 -> CH3 -> CH2 -> CH -> C, with all dehydrogenation steps being exothermic except the CH3 -> CH2 step. The O-2 dissociation reaction (O-2 -> O* + O*) is thermodynamically exothermic, with a dissociation barrier of 2.12 eV over Pd@CeO2. Subsequently, the generation of CO2 via the C* + O* and CO* + O* reactions is characterized by thermodynamically exothermic processes, with reaction energies of -1.20 and -1.01 eV, respectively. On the other hand, water production occurs through O* + H (an exothermic reaction) and OH* + H (an endothermic reaction) with reaction energies of -0.80 and +0.64 eV, respectively. These findings offer valuable insights into the potential pathways for single-atom catalysis involving transition metals supported on CeO2(111) in methane oxidation for industrial application. | - |
dc.language | English | - |
dc.publisher | American Chemical Society | - |
dc.title | Single-Atom Pd Catalyst on a CeO2 (111) Surface for Methane Oxidation: Activation Barriers and Reaction Pathways | - |
dc.type | Article | - |
dc.identifier.doi | 10.1021/acs.jpcc.4c00179 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | The Journal of Physical Chemistry C, v.128, no.21, pp.8580 - 8589 | - |
dc.citation.title | The Journal of Physical Chemistry C | - |
dc.citation.volume | 128 | - |
dc.citation.number | 21 | - |
dc.citation.startPage | 8580 | - |
dc.citation.endPage | 8589 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 001228010600001 | - |
dc.identifier.scopusid | 2-s2.0-85193914438 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | DENSITY-FUNCTIONAL THEORY | - |
dc.subject.keywordPlus | CARBON-DIOXIDE | - |
dc.subject.keywordPlus | CO ADSORPTION | - |
dc.subject.keywordPlus | DISSOCIATION | - |
dc.subject.keywordPlus | CONVERSION | - |
dc.subject.keywordPlus | PALLADIUM | - |
dc.subject.keywordPlus | DFT | - |
dc.subject.keywordPlus | DEHYDROGENATION | - |
dc.subject.keywordPlus | WATER | - |
dc.subject.keywordPlus | OXIDE | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.