Full metadata record

DC Field Value Language
dc.contributor.authorTomar, Shalini-
dc.contributor.authorBhadoria, Bhagirath Singh-
dc.contributor.authorJeong, Hojin-
dc.contributor.authorChoi, Joon Hwan-
dc.contributor.authorLee, Seung-Cheol-
dc.contributor.authorBhattacharjee, Satadeep-
dc.date.accessioned2024-05-30T08:30:39Z-
dc.date.available2024-05-30T08:30:39Z-
dc.date.created2024-05-30-
dc.date.issued2024-05-
dc.identifier.issn1932-7447-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/149952-
dc.description.abstractEmploying density functional theory, we delved into the comprehensive pathways for methane oxidation on the Pd single atom supported with CeO2(111) encompassing sequential methane dehydrogenation, O-2 dissociation, and oxidation processes. The introduction of a Pd atom into CeO2(111) led to a reduction in the barrier for CH4 dissociation to 0.50 eV. The methane dehydrogenation proceeded through a series of reactions: CH4 -> CH3 -> CH2 -> CH -> C, with all dehydrogenation steps being exothermic except the CH3 -> CH2 step. The O-2 dissociation reaction (O-2 -> O* + O*) is thermodynamically exothermic, with a dissociation barrier of 2.12 eV over Pd@CeO2. Subsequently, the generation of CO2 via the C* + O* and CO* + O* reactions is characterized by thermodynamically exothermic processes, with reaction energies of -1.20 and -1.01 eV, respectively. On the other hand, water production occurs through O* + H (an exothermic reaction) and OH* + H (an endothermic reaction) with reaction energies of -0.80 and +0.64 eV, respectively. These findings offer valuable insights into the potential pathways for single-atom catalysis involving transition metals supported on CeO2(111) in methane oxidation for industrial application.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleSingle-Atom Pd Catalyst on a CeO2 (111) Surface for Methane Oxidation: Activation Barriers and Reaction Pathways-
dc.typeArticle-
dc.identifier.doi10.1021/acs.jpcc.4c00179-
dc.description.journalClass1-
dc.identifier.bibliographicCitationThe Journal of Physical Chemistry C, v.128, no.21, pp.8580 - 8589-
dc.citation.titleThe Journal of Physical Chemistry C-
dc.citation.volume128-
dc.citation.number21-
dc.citation.startPage8580-
dc.citation.endPage8589-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001228010600001-
dc.identifier.scopusid2-s2.0-85193914438-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusDENSITY-FUNCTIONAL THEORY-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusCO ADSORPTION-
dc.subject.keywordPlusDISSOCIATION-
dc.subject.keywordPlusCONVERSION-
dc.subject.keywordPlusPALLADIUM-
dc.subject.keywordPlusDFT-
dc.subject.keywordPlusDEHYDROGENATION-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusOXIDE-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE