Full metadata record

DC Field Value Language
dc.contributor.authorGao, Zhe-
dc.contributor.authorLee, Dong-Hyun-
dc.contributor.authorZhao, Yakai-
dc.contributor.authorWang, Pei-
dc.contributor.authorMurakami, Kotaro-
dc.contributor.authorKomazaki, Shin-ichi-
dc.contributor.authorSuh, Jin-Yoo-
dc.contributor.authorKim, Hyoung Seop-
dc.contributor.authorRamamurty, Upadrasta-
dc.contributor.authorJang, Jae-il-
dc.date.accessioned2024-05-30T09:30:15Z-
dc.date.available2024-05-30T09:30:15Z-
dc.date.created2024-05-30-
dc.date.issued2024-06-
dc.identifier.issn1359-6454-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/149960-
dc.description.abstractThe hydrogen trapping and micromechanical behaviors of additively manufactured CoCrFeNi high-entropy alloy (HEA) using the laser powder bed fusion (L-PBF) technique in the as-built and pre-strained states were explored through nanoindentation and micro-tensile experiments combined with thermal desorption analysis. To analyze the influence of pre-straining, both global pre-strains, imposed using the interrupted tensile tests, and local strain levels, estimated using the digital image correlation measurements, were employed. It was revealed that prestraining (which increases the dislocation density in the alloy) does not enhance the hydrogen effects on the micromechanical performance of the L-PBF HEA. To understand this, rather unexpected, result, we investigated the trapping behavior of diffusional hydrogen in detail, through thermal desorption analysis combined with the Ag decoration technique. The results are discussed in terms of the hydrogen contents and trapping sites in the LPBF HEA.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleHydrogen trapping and micromechanical behavior in additively manufactured CoCrFeNi high-entropy alloy in as-built and pre-strained conditions-
dc.typeArticle-
dc.identifier.doi10.1016/j.actamat.2024.119886-
dc.description.journalClass1-
dc.identifier.bibliographicCitationActa Materialia, v.271-
dc.citation.titleActa Materialia-
dc.citation.volume271-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001224273900001-
dc.identifier.scopusid2-s2.0-85189562124-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusAUSTENITIC STAINLESS-STEEL-
dc.subject.keywordPlusHIGH-STRENGTH STEEL-
dc.subject.keywordPlusGRAIN-SIZE-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusTHERMAL-ANALYSIS-
dc.subject.keywordPlusINDUCED CRACKING-
dc.subject.keywordPlusEMBRITTLEMENT-
dc.subject.keywordPlusDEFORMATION-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordAuthorAdditive manufacturing-
dc.subject.keywordAuthorHigh -entropy alloy-
dc.subject.keywordAuthorHydrogen trapping-
dc.subject.keywordAuthorNanoindentation-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE