Full metadata record

DC Field Value Language
dc.contributor.authorLim, Chulwan-
dc.contributor.authorKim, Sangkuk-
dc.contributor.authorSong, Ji Hwan-
dc.contributor.authorHan, Man Ho-
dc.contributor.authorKo, Young-Jin-
dc.contributor.authorLee, Kwan-Young-
dc.contributor.authorChoi, Jae-Young-
dc.contributor.authorLee, Woong Hee-
dc.contributor.authorOh, Hyung-Suk-
dc.date.accessioned2024-05-30T09:30:42Z-
dc.date.available2024-05-30T09:30:42Z-
dc.date.created2024-05-30-
dc.date.issued2024-09-
dc.identifier.issn1754-5692-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/149967-
dc.description.abstractAlkaline local pH during a vigorous electrochemical CO2 reduction reaction (CO2RR) can improve the activity and selectivity of CO2RR. However, it also leads to an alkalinity problem in that hydroxide ions obstruct the mass transfer of CO2 to the active site, thereby limiting the current density. In this study, we introduce a silica-hydroxide cycle, which moderates the local pH by redistributing hydroxide ions, analogous to the carbonate-silicate cycle responsible for the drawdown of atmospheric CO2 on Earth. In the membrane electrode assembly (MEA) of a CO2 electrolyzer, SiO2 undergoes weathering due to the high local pH and consequently consumes OH-, reducing the pH within the MEA. The dissolved silicate ions move to the membrane and are almost regenerated to SiO2 with release of OH-. Geological and spectral observations suggest that the silica-hydroxide cycle reduces the local pH thereby enhancing mass transfer of CO2, breaking the limitation of current density for CO2RR. Our work proposes new chemical approaches to increase current density, mainly improved by physical methods, and contributes valuable insight for improving a variety of electrochemical systems.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleBreaking the current limitation of electrochemical CO2 reduction via a silica-hydroxide cycle-
dc.typeArticle-
dc.identifier.doi10.1039/d4ee00448e-
dc.description.journalClass1-
dc.identifier.bibliographicCitationEnergy & Environmental Science, v.17, no.17, pp.6215 - 6224-
dc.citation.titleEnergy & Environmental Science-
dc.citation.volume17-
dc.citation.number17-
dc.citation.startPage6215-
dc.citation.endPage6224-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-85193710723-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusALKALINITY-
dc.subject.keywordPlusMECHANISMS-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusELECTROLYSIS-
dc.subject.keywordPlusELECTROREDUCTION-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE