Full metadata record

DC Field Value Language
dc.contributor.authorKim, Youngkyu-
dc.contributor.authorChoi, Youngsoo-
dc.contributor.authorYoo, Byounghyun-
dc.date.accessioned2024-06-07T02:00:06Z-
dc.date.available2024-06-07T02:00:06Z-
dc.date.created2024-06-07-
dc.date.issued2024-06-
dc.identifier.issn0045-7825-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150008-
dc.description.abstractWe introduce a novel data reconstruction algorithm known as Gappy auto -encoder (Gappy AE) to address the limitations associated with Gappy proper orthogonal decomposition (Gappy POD), a widely used method for data reconstruction when dealing with sparse measurements or missing data. Gappy POD has inherent constraints in accurately representing solutions characterized by slowly decaying Kolmogorov N -widths, primarily due to its reliance on linear subspaces for data prediction. In contrast, Gappy AE leverages the power of nonlinear manifold representations to address data reconstruction challenges of conventional Gappy POD. It excels at real-time state prediction in scenarios where only sparsely measured data is available, filling in the gaps effectively. This capability makes Gappy AE particularly valuable, such as for digital twin and image correction applications. To demonstrate the superior data reconstruction performance of Gappy AE with sparse measurements, we provide several numerical examples, including scenarios like 2D diffusion, 2D radial advection, and 2D wave equation problems. Additionally, we assess the impact of four distinct sampling algorithms - discrete empirical interpolation method, the S -OPT algorithm, Latin hypercube sampling, and uniformly distributed sampling - on data reconstruction accuracy. Our findings conclusively show that Gappy AE outperforms Gappy POD in data reconstruction when sparse measurements are given.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleGappy AE: A nonlinear approach for Gappy data reconstruction using auto-encoder-
dc.typeArticle-
dc.identifier.doi10.1016/j.cma.2024.116978-
dc.description.journalClass1-
dc.identifier.bibliographicCitationComputer Methods in Applied Mechanics and Engineering, v.426-
dc.citation.titleComputer Methods in Applied Mechanics and Engineering-
dc.citation.volume426-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001227540400001-
dc.identifier.scopusid2-s2.0-85189940086-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMathematics, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalResearchAreaMechanics-
dc.type.docTypeArticle-
dc.subject.keywordPlusPROPER ORTHOGONAL DECOMPOSITION-
dc.subject.keywordPlusPETROV-GALERKIN PROJECTION-
dc.subject.keywordPlusMODEL-REDUCTION-
dc.subject.keywordPlusVARIABLES-
dc.subject.keywordPlusSELECTION-
dc.subject.keywordAuthorAuto-encoder-
dc.subject.keywordAuthorNonlinear manifold solution representation-
dc.subject.keywordAuthorHyper-reduction-
dc.subject.keywordAuthorSparse measurements-
dc.subject.keywordAuthorData reconstruction-
dc.subject.keywordAuthorDigital twin-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE