Full metadata record

DC Field Value Language
dc.contributor.authorKim, Hyojin-
dc.contributor.authorChoe, Jong Hyeak-
dc.contributor.authorYun, Hongryeol-
dc.contributor.authorKurisigal, Jintu Francis-
dc.contributor.authorYu, Sumin-
dc.contributor.authorLee, Yong Hoon-
dc.contributor.authorLee, Jung-Hoon-
dc.contributor.authorHong, Chang Seop-
dc.date.accessioned2024-06-07T02:00:10Z-
dc.date.available2024-06-07T02:00:10Z-
dc.date.created2024-06-07-
dc.date.issued2024-06-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150009-
dc.description.abstractAlthough porous adsorbents show potential for NH 3 capture and storage, practical issues such as stability and limited gravimetric/volumetric capacity persist. Lithium chloride (LiCl), which possesses the highest theoretical NH 3 capacity among metal halides, faces challenges such as a significantly high plateau pressure and inevitable volume expansion in the LiCl(NH 3 ) 4 complex, hindering static NH 3 storage. Herein, we introduce a series of M 2 (dobpdc)-based composites, specifically LiCl@Mg 2 (dobpdc)-5 , showcasing the highest gravimetric/volumetric NH 3 adsorption capacity (48.3 mmol g -1 / 6 5.8 mmol cm -3 ) and superior NH 3 storage density (1.12 g cm -3 ) at 298 K and 1 bar. Notably, the indirect gravimetric hydrogen storage capacity was calculated to be 14.6 wt%, which is comparable to the hydrogen storage capacity of NH 3 itself (17.8 wt%). This remarkable performance stems from the presence of LiCl in the metal nodes, highly dispersed LiCl nanoparticles (NPs), and open metal sites. Additionally, the composite avoids volume expansion even after LiCl(NH 3 ) 4 formation at 273 K. Thorough analysis using van der Waals-corrected density functional theory calculations confirmed the efficacy of the LiCl impregnation method, suggesting its potential to advance NH 3 storage systems for hydrogen carriers.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleHigh ammonia storage capacity in LiCl nanoparticle-embedded metal-organic framework composites-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2024.151319-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.489-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume489-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001232499300001-
dc.identifier.scopusid2-s2.0-85190780534-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusHYDROGEN STORAGE-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusCAPTURE-
dc.subject.keywordPlusNH3-
dc.subject.keywordPlusABSORPTION-
dc.subject.keywordPlusCO2-
dc.subject.keywordPlusDESORPTION-
dc.subject.keywordPlusCOMPLEXES-
dc.subject.keywordPlusINSERTION-
dc.subject.keywordPlusPOLYMERS-
dc.subject.keywordAuthorMetal -organic frameworks-
dc.subject.keywordAuthorMetal halides-
dc.subject.keywordAuthorComposite-
dc.subject.keywordAuthorAmmonia-
dc.subject.keywordAuthorAdsorption-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE