Full metadata record

DC Field Value Language
dc.contributor.authorHa, Son-
dc.contributor.authorPark, Ji Yong-
dc.contributor.authorHuh, Sung-Ho-
dc.contributor.authorYu, Seung-Ho-
dc.contributor.authorKwak, Jin Hwan-
dc.contributor.authorPark, Jungjin-
dc.contributor.authorLim, Hee-Dae-
dc.contributor.authorAhn, Dong June-
dc.contributor.authorJin, Hyoung-Joon-
dc.contributor.authorLim, Hyung-Kyu-
dc.contributor.authorYang, Seung Jae-
dc.contributor.authorYun, Young Soo-
dc.date.accessioned2024-06-07T02:00:30Z-
dc.date.available2024-06-07T02:00:30Z-
dc.date.created2024-06-07-
dc.date.issued2024-09-
dc.identifier.issn1613-6810-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150014-
dc.description.abstractThe lithium deposited via the complex electrochemical heterogeneous lithium deposition reaction (LDR) process on a lithium foil-based anode (LFA) forms a high-aspect-ratio shape whenever the reaction kinetics reach its limit, threatening battery safety. Thereby, a research strategy that boosts the LDR kinetics is needed to construct a high-power and safe lithium metal anode. In this study, the kinetic limitations of the LDR process on LFA are elucidated through operando and ex situ observations using in-depth electrochemical analyses. In addition, ultra-thin (approximate to 0.5 mu m) and high modulus (>= 19 GPa) double-walled carbon nanotube (DWNT) membranes with different surface properties are designed to catalyze high-safety LDRs. The oxygen-functionalized DWNT membranes introduced on the LFA top surface simultaneously induce multitudinous lithium nuclei, leading to film-like lithium deposition even at a high current density of 20 mA cm-2. More importantly, the layer-by-layer assembly of the oxygen-functionalized and pristine DWNT membranes results in different surface energies between the top and bottom surfaces, enabling selective surface LDRs underneath the high-modulus bilayer membranes. The protective LDR on the bilayer-covered LFA guarantees an invulnerable cycling process in large-area pouch cells at high current densities for more than 1000 cycles, demonstrating the practicability of LFA in a conventional liquid electrolyte system. Ultra-thin bilayer membranes composed of double-walled carbon nanotubes (DWNTs) and oxygen-functionalized DWNTs, denoted as C and OC, respectively, are introduced on lithium foil anode (LFA). The OC@C bilayer on LFA enables selective area lithium deposition reactions only underneath the high-modulus bilayers, achieving high power and high-safety cycling in a large-area pouch cell. image-
dc.languageEnglish-
dc.publisherWiley - V C H Verlag GmbbH & Co.-
dc.titleHigh-Power and Large-Area Anodes for Safe Lithium-Metal Batteries-
dc.typeArticle-
dc.identifier.doi10.1002/smll.202400638-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSmall, v.20, no.36-
dc.citation.titleSmall-
dc.citation.volume20-
dc.citation.number36-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-85194587347-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusINTERPHASE-
dc.subject.keywordAuthordouble-walled carbon nanotube (DWNT)-
dc.subject.keywordAuthorheterogeneous lithium deposition reaction (LDR)-
dc.subject.keywordAuthorlarge-area lithium metal anode-
dc.subject.keywordAuthorprotective bilayer-
dc.subject.keywordAuthorselective surface lithium deposition-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE