Full metadata record

DC Field Value Language
dc.contributor.authorLee, Seungju-
dc.contributor.authorSeong, Jong Geun-
dc.contributor.authorJo, YoungSuk-
dc.contributor.authorHwang, Son-Jong-
dc.contributor.authorGwak, Gyeongseok-
dc.contributor.authorPark, Yongha-
dc.contributor.authorKim, Yeong Cheon-
dc.contributor.authorLim, Katie Heeyum-
dc.contributor.authorPark, Hee-Young-
dc.contributor.authorJang, Jong Hyun-
dc.contributor.authorKim, Hyoung-Juhn-
dc.contributor.authorNam, Suk-Woo-
dc.contributor.authorLee, So Young-
dc.date.accessioned2024-06-13T02:30:14Z-
dc.date.available2024-06-13T02:30:14Z-
dc.date.created2024-06-13-
dc.date.issued2024-07-
dc.identifier.issn2058-7546-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150069-
dc.description.abstractOperating polymer electrolyte membrane (PEM) fuel cells at high temperatures can simplify water management and allow integration with high-purity fuel processing units. However, existing polybenzimidazole (PBI)-based PEM fuel cells face challenges due to the instability of proton transport above 160 degrees C. Here we report a PEM composed of para-PBI (p-PBI) and cerium hydrogen phosphate (CeHP) that can be used in a fuel cell at up to 250 degrees C. During fabrication, echinoid-shaped CeHP particles form a well-dispersed and interconnected self-assembled network within the PBI matrix (SAN-CeHP-PBI), allowing them to outperform p-PBI and conventional CeHP-PBI PEMs in terms of proton transport above 200 degrees C. We report a SAN-CeHP-PBI-based fuel cell that reaches a maximum power density of 2.35 W cm-2 (at 250 degrees C in dry H2/O2) with negligible degradation over 500 h during thermal cycling (at 160-240 degrees C, H2/air). SAN-CeHP-PBI also demonstrates excellent CO tolerance, showing promise for integration with liquid hydrogen carrier systems. High-temperature operation of polymer electrolyte membrane fuel cells has some advantages but is also challenging due to the instability of proton transport above 160 degrees C. Here the authors report a polymer electrolyte membrane comprising well-dispersed and interconnected cerium hydrogen phosphate particles within a polymer matrix that performs well in a fuel cell at up to 250 degrees C.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleSelf-assembled network polymer electrolyte membranes for application in fuel cells at 250 °C-
dc.typeArticle-
dc.identifier.doi10.1038/s41560-024-01536-4-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNature Energy, v.9, no.7, pp.849 - 861-
dc.citation.titleNature Energy-
dc.citation.volume9-
dc.citation.number7-
dc.citation.startPage849-
dc.citation.endPage861-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001238549900001-
dc.identifier.scopusid2-s2.0-85195199241-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusPOLYBENZIMIDAZOLE-BASED MEMBRANES-
dc.subject.keywordPlusHIGH-TEMPERATURE-
dc.subject.keywordPlusINTERMEDIATE-TEMPERATURE-
dc.subject.keywordPlusPROTON CONDUCTION-
dc.subject.keywordPlusACID-
dc.subject.keywordPlusEXCHANGE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusOPERATION-
dc.subject.keywordPlusNMR-
dc.subject.keywordPlusENHANCEMENT-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE