Pt-Decorated bimetallic PdRu nanocubes with tailorable surface electronic structures for highly efficient acidic hydrogen evolution reaction
- Authors
- Xiao, Xiangyun; Shang, Yiming; Bai, Yang; Miao, Han; Lu, Xiaowang; Lee, KyuJoon; Ahn, Jae-Pyoung; Younis, Osama; Yu, Taekyung; Yang, Xinchun
- Issue Date
- 2024-06
- Publisher
- Pergamon Press Ltd.
- Citation
- International Journal of Hydrogen Energy, v.71, pp.1026 - 1033
- Abstract
- Efficient and stable catalysts are crucial for green hydrogen production from acidic water splitting. Herein, using interface engineering, the surface electronic structures of bimetallic PdRu nanocubes have been significantly regulated by Pt atoms (PdRu@Pt). Interestingly, Pt atoms are located on the corners and facets of PdRu nanocubes, resulting in lattice tension and fast electron transfer. As a result, the obtained trimetallic PdRu@Pt nanocubes with an average size of 13 nm have exhibited highly enhanced catalytic activity and stability for hydrogen evolution reaction (HER) in acidic media, delivering 18 mV lower overpotential to reach a current density of 10 mA cm -2 , and maintaining a remarkable long-term stability for up to 24 h. In particular, the lower overpotential of 489 mV at 500 mA cm -2 for PdRu 0.04 @Pt 0.12 nanocubes indicates its potential for future industrial application in the future. Such enhancements in HER performance can be attributed to the highly facetedge -exposed Pt atoms and the significant strain effects resulting from the introducing Pt atomic layers to PdRu surfaces.
- Keywords
- NANOPARTICLES; Interface engineering; Trimetallic catalysts; Nanocube; Hydrogen evolution reaction
- ISSN
- 0360-3199
- URI
- https://pubs.kist.re.kr/handle/201004/150101
- DOI
- 10.1016/j.ijhydene.2024.05.066
- Appears in Collections:
- KIST Article > 2024
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.