Full metadata record

DC Field Value Language
dc.contributor.authorOh, Seungbae-
dc.contributor.authorDong, Xue-
dc.contributor.authorWoo, Chaeheon-
dc.contributor.authorZhang, Xiaojie-
dc.contributor.authorKim, Yeongjin-
dc.contributor.authorChoi, Kyung Hwan-
dc.contributor.authorLee, Bom-
dc.contributor.authorKim, Ji-Hee-
dc.contributor.authorKang, Jinsu-
dc.contributor.authorBang, Hyeon-Seok-
dc.contributor.authorJeon, Jiho-
dc.contributor.authorOh, Hyung-Suk-
dc.contributor.authorYu, Hak Ki-
dc.contributor.authorMun, Junyoung-
dc.contributor.authorChoi, Jae-Young-
dc.date.accessioned2024-06-28T08:00:22Z-
dc.date.available2024-06-28T08:00:22Z-
dc.date.created2024-06-28-
dc.date.issued2024-06-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150148-
dc.description.abstractThe development of advanced anode materials for lithium-ion batteries that can provide high specific capacity and stable cycle performance is of paramount importance. This study presents a novel approach for synthesizing molecular-level homogeneous carbon integration to porous SiO2 nanoparticles (SiO2@C NPs) tailored to enhance their electrochemical activities for lithium-ion battery anode. By varying the ratio of the precursors for sol-gel reaction of (phenyltrimethoxysilane (PTMS) and tetraethoxysilane (TEOS)), the carbon content and porosity within SiO2@C NPs is precisely controlled. With a 4:6 PTMS and TEOS ratio, the SiO2@C NPs exhibit a highly mesoporous structure with thin carbon and the partially reduced SiOx phases, which balances ion and charge transfer for electrochemical activation of SiO2@C NPs resulting remarkable capacity and cycle performance. This study offers a novel strategy for preparing affordable high capacity SiO2-based advanced anode materials with enhanced electrochemical performances. image-
dc.languageEnglish-
dc.publisherWiley-
dc.titlePrecision integration of uniform molecular-level carbon into porous silica framework for synergistic electrochemical activation in high-performance lithium-ion batteries-
dc.typeArticle-
dc.identifier.doi10.1002/eom2.12469-
dc.description.journalClass1-
dc.identifier.bibliographicCitationEcoMat, v.6, no.6-
dc.citation.titleEcoMat-
dc.citation.volume6-
dc.citation.number6-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001245463400001-
dc.identifier.scopusid2-s2.0-85195632971-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryGreen & Sustainable Science & Technology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusANODE MATERIAL-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusLITHIATION-
dc.subject.keywordPlusPARTICLES-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusSIO2-
dc.subject.keywordAuthoranode-
dc.subject.keywordAuthorLi-ion battery-
dc.subject.keywordAuthorporous materials-
dc.subject.keywordAuthorSiO2@carbon nanoparticles-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE