Full metadata record

DC Field Value Language
dc.contributor.authorPark, Jin Soo-
dc.contributor.authorHuh, Keun Young-
dc.contributor.authorKim, Min-Seok-
dc.contributor.authorJung, Soo Young-
dc.contributor.authorPark, Jung Ho-
dc.contributor.authorKim, Soo Jin-
dc.contributor.authorJang, Ho Won-
dc.contributor.authorHwang, Kyeong Seob-
dc.contributor.authorKim, Hong Nam-
dc.contributor.authorKim, Tae Geun-
dc.contributor.authorBaek, Seung-Hyub-
dc.contributor.authorLee, Byung Chul-
dc.date.accessioned2024-07-01T01:00:32Z-
dc.date.available2024-07-01T01:00:32Z-
dc.date.created2024-06-28-
dc.date.issued2024-10-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150167-
dc.description.abstractThis article presents a relaxor ferroelectric, lead magnesium niobate-lead zirconate titanate (PMN-PZT)-thin-film-based piezoelectric drop-on-demand printhead exhibiting high jetting capability and thermal stability. Unlike conventional piezoelectric materials such as lead zirconate titanate (PZT), the PMN-PZT film demonstrates high electrical responsiveness to polarization and reduced hysteresis loss due to polar nano regions, thereby improving printhead’s performance. Our research involves a comprehensive exploration of the fabrication and packaging processes for the PMN-PZT-based printhead, along with optimization of driving pulses to maximize its performance. An in-depth investigation into the dynamics of ferroelectric film’s polarization identifies the best driving conditions that minimize self-heating while maximizing the dynamic displacement of the printhead. As demonstrated in the results, the unipolar pulse, capable of maintaining a consistent polarization direction of the film, yielded twice the displacement compared to driving with a bipolar pulse. Simultaneously, it reduced the thermal dissipation of the printhead by 73.4?%. Consequently, we aim to propose a method for developing ferroelectric thin film-based print heads suitable for various biological modeling research, leveraging their high productivity and thermal stability.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleA relaxor-ferroelectric PMN-PZT thin-film-based drop-on-demand printhead for bioprinting applications with high piezoelectricity and low heat dissipation-
dc.typeArticle-
dc.identifier.doi10.1016/j.snb.2024.136194-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSensors and Actuators, B: Chemical, v.417-
dc.citation.titleSensors and Actuators, B: Chemical-
dc.citation.volume417-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001261865500001-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.type.docTypeArticle-
dc.subject.keywordAuthorDrop -on -demand (DoD)-
dc.subject.keywordAuthorRelaxor-ferroelectrics-
dc.subject.keywordAuthorBioprinting-
dc.subject.keywordAuthorPiezoelectric inkjet printhead-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE