Full metadata record

DC Field Value Language
dc.contributor.authorKim, Taikyu-
dc.contributor.authorJeon, Jihoon-
dc.contributor.authorRyu, Seung Ho-
dc.contributor.authorChung, Hong Keun-
dc.contributor.authorJang, Myoungsu-
dc.contributor.authorLee, Seunghyeok-
dc.contributor.authorChung, Yoon Jang-
dc.contributor.authorKim, Seong Keun-
dc.date.accessioned2024-07-04T06:00:12Z-
dc.date.available2024-07-04T06:00:12Z-
dc.date.created2024-07-04-
dc.date.issued2024-07-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150171-
dc.description.abstractIn general, the electronic and optical properties of oxide films can significantly benefit from highly textured crystallinity. However, oxide films grown by atomic layer deposition (ALD), a powerful technique for the synthesis of high-quality, nanoscale thin films, usually exhibit amorphous or randomly oriented polycrystalline phases. Here, we demonstrate the growth of highly textured rutile phase ALD TiO2 films through rational substrate design. Both a- and c-axis preferentially oriented TiO2 films are obtained by varying the lattice parameters of the initial ALD growth surface. Under optimized conditions, we find that it is possible to deposit high-quality, c-axis preferentially aligned TiO2 films with a bulk dielectric constant approaching 185, rivaling the single crystal limit. These films display a remarkably high dielectric constant of 117 despite thin thickness of 5.2 nm. Moreover, the addition of a single doping sequence of Al2O3 successfully suppresses leakage currents to levels compatible with modern dynamic random access memory cells, all the while maintaining the high bulk dielectric constant of 137. These results clearly highlight the prospect of utilizing crystal orientation engineering in ALD thin films for emerging semiconductor devices.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleAtomic Layer Growth of Rutile TiO2 Films with Ultrahigh Dielectric Constants via Crystal Orientation Engineering-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.4c08379-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.16, no.26, pp.33877 - 33884-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume16-
dc.citation.number26-
dc.citation.startPage33877-
dc.citation.endPage33884-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001252176900001-
dc.identifier.scopusid2-s2.0-85196653297-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusELECTRICAL-PROPERTIES-
dc.subject.keywordPlusRU ELECTRODE-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusTHICKNESS-
dc.subject.keywordPlusMEMORY-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordAuthoratomic layer deposition-
dc.subject.keywordAuthortitanium oxide-
dc.subject.keywordAuthorhigh-k dielectric-
dc.subject.keywordAuthorthin film-
dc.subject.keywordAuthorpreferred growth-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE