Full metadata record

DC Field Value Language
dc.contributor.authorLee, Jae-Ik-
dc.contributor.authorWerginz, Paul-
dc.contributor.authorKameneva, Tatiana-
dc.contributor.authorIm, Maesoon-
dc.contributor.authorFried, Shelley I.-
dc.date.accessioned2024-07-04T06:00:34Z-
dc.date.available2024-07-04T06:00:34Z-
dc.date.created2024-07-04-
dc.date.issued2024-06-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150176-
dc.description.abstractNeuromodulation using high frequency (>1 kHz) electric stimulation (HFS) enables preferential activation or inhibition of individual neural types, offering the possibility of more effective treatments across a broad spectrum of neurological diseases. To improve effectiveness, it is important to better understand the mechanisms governing activation and inhibition with HFS so that selectivity can be optimized. In this study, we measure the membrane potential (V-m) and spiking responses of ON and OFF alpha-sustained retinal ganglion cells (RGCs) to a wide range of stimulus frequencies (100-2500 Hz) and amplitudes (10-100 mu A). Our findings indicate that HFS induces shifts in V-m, with both the strength and polarity of the shifts dependent on the stimulus conditions. Spiking responses in each cell directly correlate with the shifts in V-m, where strong depolarization leads to spiking suppression. Comparisons between the two cell types reveal that ON cells are more depolarized by a given amplitude of HFS than OFF cells-this sensitivity difference enables the selective targeting. Computational modeling indicates that ion-channel dynamics largely account for the shifts in V-m, suggesting that a better understanding of the differences in ion-channel properties across cell types may improve the selectivity and ultimately, enhance HFS-based neurostimulation strategies.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.titleMembrane depolarization mediates both the inhibition of neural activity and cell-type-differences in response to high-frequency stimulation-
dc.typeArticle-
dc.identifier.doi10.1038/s42003-024-06359-3-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCommunications Biology, v.7, no.1-
dc.citation.titleCommunications Biology-
dc.citation.volume7-
dc.citation.number1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001250610600009-
dc.identifier.scopusid2-s2.0-85196267222-
dc.relation.journalWebOfScienceCategoryBiology-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaLife Sciences & Biomedicine - Other Topics-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusRETINAL GANGLION-CELLS-
dc.subject.keywordPlusCONDUCTION BLOCK-
dc.subject.keywordPlusELECTRICAL-STIMULATION-
dc.subject.keywordPlusNERVE-CONDUCTION-
dc.subject.keywordPlusHCN CHANNELS-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusSPIKING-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusVARIABILITY-
dc.subject.keywordPlusSUPPRESSION-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE