Full metadata record

DC Field Value Language
dc.contributor.authorKo, Young-Jin-
dc.contributor.authorLim, Chulwan-
dc.contributor.authorJin, Junyoung-
dc.contributor.authorKim, Min Gyu-
dc.contributor.authorLee, Ji Yeong-
dc.contributor.authorSeong, Tae-Yeon-
dc.contributor.authorLee, Kwan-Young-
dc.contributor.authorMin, Byoung Koun-
dc.contributor.authorChoi, Jae-Young-
dc.contributor.authorNoh, Taegeun-
dc.contributor.authorHwang, Gyu Weon-
dc.contributor.authorLee, Woong Hee-
dc.contributor.authorOh, Hyung-Suk-
dc.date.accessioned2024-07-04T06:00:38Z-
dc.date.available2024-07-04T06:00:38Z-
dc.date.created2024-07-04-
dc.date.issued2024-04-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150177-
dc.description.abstractTo realize economically feasible electrochemical CO2 conversion, achieving a high partial current density for value-added products is particularly vital. However, acceleration of the hydrogen evolution reaction due to cathode flooding in a high-current-density region makes this challenging. Herein, we find that partially ligand-derived Ag nanoparticles (Ag-NPs) could prevent electrolyte flooding while maintaining catalytic activity for CO2 electroreduction. This results in a high Faradaic efficiency for CO (>90%) and high partial current density (298.39 mA cm(-2)), even under harsh stability test conditions (3.4 V). The suppressed splitting/detachment of Ag particles, due to the lipid ligand, enhance the uniform hydrophobicity retention of the Ag-NP electrode at high cathodic overpotentials and prevent flooding and current fluctuations. The mass transfer of gaseous CO2 is maintained in the catalytic region of several hundred nanometers, with the smooth formation of a triple phase boundary, which facilitate the occurrence of CO2RR instead of HER. We analyze catalyst degradation and cathode flooding during CO2 electrolysis through identical-location transmission electron microscopy and operando synchrotron-based X-ray computed tomography. This study develops an efficient strategy for designing active and durable electrocatalysts for CO2 electrolysis.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.titleExtrinsic hydrophobicity-controlled silver nanoparticles as efficient and stable catalysts for CO2 electrolysis-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-024-47490-3-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNature Communications, v.15, no.1-
dc.citation.titleNature Communications-
dc.citation.volume15-
dc.citation.number1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001207619900038-
dc.identifier.scopusid2-s2.0-85190884572-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusOLEYLAMINE-
dc.subject.keywordPlusINSIGHTS-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusAG-
dc.subject.keywordPlusELECTROCHEMICAL CO2-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusGOLD-
dc.subject.keywordPlusELECTROREDUCTION-
dc.subject.keywordPlusELECTRODES-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE