Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, Ju-Young | - |
dc.contributor.author | Jung, Dahee | - |
dc.contributor.author | Royer, Sebastien | - |
dc.date.accessioned | 2024-07-04T06:30:35Z | - |
dc.date.available | 2024-07-04T06:30:35Z | - |
dc.date.created | 2024-07-04 | - |
dc.date.issued | 2024-06 | - |
dc.identifier.issn | 2050-084X | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/150184 | - |
dc.description.abstract | Animals can use a repertoire of strategies to navigate in an environment, and it remains an intriguing question how these strategies are selected based on the nature and familiarity of environments. To investigate this question, we developed a fully automated variant of the Barnes maze, characterized by 24 vestibules distributed along the periphery of a circular arena, and monitored the trajectories of mice over 15 days as they learned to navigate towards a goal vestibule from a random start vestibule. We show that the patterns of vestibule visits can be reproduced by the combination of three stochastic processes reminiscent of random, serial, and spatial strategies. The processes randomly selected vestibules based on either uniform (random) or biased (serial and spatial) probability distributions. They closely matched experimental data across a range of statistical distributions characterizing the length, distribution, step size, direction, and stereotypy of vestibule sequences, revealing a shift from random to spatial and serial strategies over time, with a strategy switch occurring approximately every six vestibule visits. Our study provides a novel apparatus and analysis toolset for tracking the repertoire of navigation strategies and demonstrates that a set of stochastic processes can largely account for exploration patterns in the Barnes maze. | - |
dc.language | English | - |
dc.publisher | eLife Sciences Publications | - |
dc.title | Stochastic characterization of navigation strategies in an automated variant of the Barnes maze | - |
dc.type | Article | - |
dc.identifier.doi | 10.7554/eLife.88648 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | eLife, v.12 | - |
dc.citation.title | eLife | - |
dc.citation.volume | 12 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 001252176400001 | - |
dc.identifier.scopusid | 2-s2.0-85196695702 | - |
dc.relation.journalWebOfScienceCategory | Biology | - |
dc.relation.journalResearchArea | Life Sciences & Biomedicine - Other Topics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | MICE | - |
dc.subject.keywordPlus | STRIATUM | - |
dc.subject.keywordPlus | CORTEX | - |
dc.subject.keywordPlus | TASK | - |
dc.subject.keywordPlus | MEMORY | - |
dc.subject.keywordPlus | SPATIAL GOALS | - |
dc.subject.keywordPlus | PLACE CELLS | - |
dc.subject.keywordPlus | WATER MAZE | - |
dc.subject.keywordPlus | GRID CELLS | - |
dc.subject.keywordPlus | HIPPOCAMPAL | - |
dc.subject.keywordAuthor | navigation strategy | - |
dc.subject.keywordAuthor | automated maze apparatus | - |
dc.subject.keywordAuthor | stochastic processes | - |
dc.subject.keywordAuthor | mixture model | - |
dc.subject.keywordAuthor | markov chain model | - |
dc.subject.keywordAuthor | genetic algorithm | - |
dc.subject.keywordAuthor | Mouse | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.