Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Moon, Dowon | - |
dc.contributor.author | Kim, Seong-Eun | - |
dc.contributor.author | Wang, Chuangqi | - |
dc.contributor.author | Lee, Kwonmoo | - |
dc.contributor.author | Doh, Junsang | - |
dc.date.accessioned | 2024-07-11T06:30:48Z | - |
dc.date.available | 2024-07-11T06:30:48Z | - |
dc.date.created | 2024-07-11 | - |
dc.date.issued | 2024-09 | - |
dc.identifier.issn | 1976-0280 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/150223 | - |
dc.description.abstract | The cytotoxicity assay of immune cells based on live cell imaging offers comprehensive information at the single cell-level information, but the data acquisition and analysis are labor-intensive. To overcome this limitation, we previously developed single cancer cell arrays that immobilize cancer cells in microwells as single cell arrays, thus allow high-throughput data acquisition. In this study, we utilize deep learning to automatically analyze NK cell cytotoxicity in the context of single cancer cell arrays. Defined cancer cell position and the separation of NK cells and cancer cells along distinct optical planes facilitate segmentation and classification by deep learning. Various deep learning models are evaluated to determine the most appropriate model. The results of the deep learning-based automated data analysis are consistent with those of the previous manual analysis. The integration of the microwell platform and deep learning would present new opportunities for the analysis of cell-cell interactions. | - |
dc.language | English | - |
dc.publisher | 한국바이오칩학회 | - |
dc.title | Deep Learning-Based Automated Analysis of NK Cell Cytotoxicity in Single Cancer Cell Arrays | - |
dc.type | Article | - |
dc.identifier.doi | 10.1007/s13206-024-00158-y | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | BioChip Journal, v.18, no.3, pp.453 - 463 | - |
dc.citation.title | BioChip Journal | - |
dc.citation.volume | 18 | - |
dc.citation.number | 3 | - |
dc.citation.startPage | 453 | - |
dc.citation.endPage | 463 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.description.journalRegisteredClass | kci | - |
dc.identifier.kciid | ART003119082 | - |
dc.relation.journalWebOfScienceCategory | Biochemical Research Methods | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Analytical | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalResearchArea | Biochemistry & Molecular Biology | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.type.docType | Article; Early Access | - |
dc.subject.keywordPlus | LACTATE-DEHYDROGENASE | - |
dc.subject.keywordPlus | ASSAY | - |
dc.subject.keywordPlus | IMMUNOTHERAPY | - |
dc.subject.keywordAuthor | Deep learning | - |
dc.subject.keywordAuthor | NK cell cytotoxicity | - |
dc.subject.keywordAuthor | Single cell array | - |
dc.subject.keywordAuthor | Cell-cell interaction | - |
dc.subject.keywordAuthor | Cancer immunotherapy | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.