Full metadata record

DC Field Value Language
dc.contributor.authorBui, Trung Tuyen-
dc.contributor.authorShin, Mingyu-
dc.contributor.authorAbbas, Saleem-
dc.contributor.authorIkhsan, Muhammad Mara-
dc.contributor.authorDo, Xuan Huy-
dc.contributor.authorDayan, Asridin-
dc.contributor.authorAlmind, Mads Radmer-
dc.contributor.authorPark, Sungmin-
dc.contributor.authorAili, David-
dc.contributor.authorHjelm, Johan-
dc.contributor.authorHwang, Jinyeon-
dc.contributor.authorHa, Heung Yong-
dc.contributor.authorAzizi, Kobra-
dc.contributor.authorKwon, Yongchai-
dc.contributor.authorHenkensmeier, Dirk-
dc.date.accessioned2024-07-15T05:30:08Z-
dc.date.available2024-07-15T05:30:08Z-
dc.date.created2024-07-15-
dc.date.issued2024-07-
dc.identifier.issn1614-6832-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150235-
dc.description.abstractIon conducting membranes play a crucial role in redox flow batteries, separating anolyte and catholyte while allowing proton transport to complete the circuit. However, most membranes are trapped in a trade-off relation and show either low conductivity or high vanadium crossover. This study investigates the use of dense sulfonated para-polybenzimidazole membranes for vanadium redox flow batteries (VRFBs), and analyzes the effects of membrane preparation process, membrane thickness and operating temperature on the VRFB performance. The results demonstrate superior performance of VRFBs utilizing fluorine-free sulfonated para-polybenzimidazole membranes compared to other types. Under optimal conditions, the VRFB exhibits high coulombic efficiency (>99%) and high energy efficiency (EE, 92.2% at a current density of 80 mA cm?2), and durability. The achieved EE represents one of the highest reported in the literature for VRFBs. In addition, it is shown that operation at 35 °C has benefits at high current densities (EE at 300 mA cm?2 is over 80% at 35 °C but 72% at 25 °C), while the operation at 80 mA cm?2 only shows a small temperature effect (91.8 and 92.2%, respectively).-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleSulfonated para-Polybenzimidazole Membranes for Use in Vanadium Redox Flow Batteries-
dc.typeArticle-
dc.identifier.doi10.1002/aenm.202401375-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Energy Materials-
dc.citation.titleAdvanced Energy Materials-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordAuthorconductivity-
dc.subject.keywordAuthorenergy efficiency-
dc.subject.keywordAuthoroperating temperature-
dc.subject.keywordAuthorsulfonated para-polybenzimidazole-
dc.subject.keywordAuthorVRFB-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE