Full metadata record

DC Field Value Language
dc.contributor.authorJo, Jinhyeon-
dc.contributor.authorKim, Subin-
dc.contributor.authorKwon, Junhwa-
dc.contributor.authorCho, Ki-Yeop-
dc.contributor.authorSong, Hayong-
dc.contributor.authorShin, Jaewook-
dc.contributor.authorLee, Seung Jong-
dc.contributor.authorKim, Wonkeun-
dc.contributor.authorRyu, Kyoung Han-
dc.contributor.authorEom, Kwangsup-
dc.date.accessioned2024-07-26T05:00:11Z-
dc.date.available2024-07-26T05:00:11Z-
dc.date.created2024-07-25-
dc.date.issued2024-09-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150295-
dc.description.abstractLithium metal is a promising anode material for next-generation high-energy-density secondary batteries. However, the uncontrolled growth of Li dendrites leads to infinite volume expansion and poor cycling stability. Herein, we propose a designable insulating polydopamine (PDA)-coated porous polytetrafluoroethylene (PTFE) scaffold. A porous PTFE (pPTFE) scaffold with micron-sized pores was fabricated, which provided bottom-up Li deposition owing to its insulating nature. Furthermore, the PDA-coated porous PTFE (PDA-pPTFE) scaffold provided internal space for Li growth and homogenized the Li-ion flux with abundant polar functional groups in the PDA, enabling "bottom-up" Li deposition within the scaffold without dendrite growth. This uniquely designed scaffold demonstrated excellent performance in half and symmetric cells with a small voltage hysteresis and dendrite-free Li plating. Moreover, when coupled with high-loading NCM cathodes (similar to 4 mA h cm(-2)), the PDA-pPTFE-based full cells exhibited stable cycling and rate performance, even with a low NP ratio of 1.0 at a rate of 1/3C, and exhibited a high energy density of 801 W h L-1. These results indicated the potential of the PDA-pPTFE scaffold as an anode material for highly stable next-generation rechargeable batteries.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleRational design of polymer-based insulating scaffolds for high-capacity lithium metal batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2024.153383-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.495-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume495-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001265328000001-
dc.identifier.scopusid2-s2.0-85197081693-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-ENERGY-
dc.subject.keywordPlusANODE-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusION-
dc.subject.keywordPlusSTRATEGIES-
dc.subject.keywordPlusDENSITY-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordAuthorLithium metal batteries-
dc.subject.keywordAuthorLithium metal anodes-
dc.subject.keywordAuthorPorous scaffold-
dc.subject.keywordAuthorPolydopamine-
dc.subject.keywordAuthorPTFE-
dc.subject.keywordAuthorHigh energy full-cell-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE