Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jo, Jinhyeon | - |
dc.contributor.author | Kim, Subin | - |
dc.contributor.author | Kwon, Junhwa | - |
dc.contributor.author | Cho, Ki-Yeop | - |
dc.contributor.author | Song, Hayong | - |
dc.contributor.author | Shin, Jaewook | - |
dc.contributor.author | Lee, Seung Jong | - |
dc.contributor.author | Kim, Wonkeun | - |
dc.contributor.author | Ryu, Kyoung Han | - |
dc.contributor.author | Eom, Kwangsup | - |
dc.date.accessioned | 2024-07-26T05:00:11Z | - |
dc.date.available | 2024-07-26T05:00:11Z | - |
dc.date.created | 2024-07-25 | - |
dc.date.issued | 2024-09 | - |
dc.identifier.issn | 1385-8947 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/150295 | - |
dc.description.abstract | Lithium metal is a promising anode material for next-generation high-energy-density secondary batteries. However, the uncontrolled growth of Li dendrites leads to infinite volume expansion and poor cycling stability. Herein, we propose a designable insulating polydopamine (PDA)-coated porous polytetrafluoroethylene (PTFE) scaffold. A porous PTFE (pPTFE) scaffold with micron-sized pores was fabricated, which provided bottom-up Li deposition owing to its insulating nature. Furthermore, the PDA-coated porous PTFE (PDA-pPTFE) scaffold provided internal space for Li growth and homogenized the Li-ion flux with abundant polar functional groups in the PDA, enabling "bottom-up" Li deposition within the scaffold without dendrite growth. This uniquely designed scaffold demonstrated excellent performance in half and symmetric cells with a small voltage hysteresis and dendrite-free Li plating. Moreover, when coupled with high-loading NCM cathodes (similar to 4 mA h cm(-2)), the PDA-pPTFE-based full cells exhibited stable cycling and rate performance, even with a low NP ratio of 1.0 at a rate of 1/3C, and exhibited a high energy density of 801 W h L-1. These results indicated the potential of the PDA-pPTFE scaffold as an anode material for highly stable next-generation rechargeable batteries. | - |
dc.language | English | - |
dc.publisher | Elsevier BV | - |
dc.title | Rational design of polymer-based insulating scaffolds for high-capacity lithium metal batteries | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.cej.2024.153383 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Chemical Engineering Journal, v.495 | - |
dc.citation.title | Chemical Engineering Journal | - |
dc.citation.volume | 495 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 001265328000001 | - |
dc.identifier.scopusid | 2-s2.0-85197081693 | - |
dc.relation.journalWebOfScienceCategory | Engineering, Environmental | - |
dc.relation.journalWebOfScienceCategory | Engineering, Chemical | - |
dc.relation.journalResearchArea | Engineering | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | HIGH-ENERGY | - |
dc.subject.keywordPlus | ANODE | - |
dc.subject.keywordPlus | DEPOSITION | - |
dc.subject.keywordPlus | ION | - |
dc.subject.keywordPlus | STRATEGIES | - |
dc.subject.keywordPlus | DENSITY | - |
dc.subject.keywordPlus | GROWTH | - |
dc.subject.keywordAuthor | Lithium metal batteries | - |
dc.subject.keywordAuthor | Lithium metal anodes | - |
dc.subject.keywordAuthor | Porous scaffold | - |
dc.subject.keywordAuthor | Polydopamine | - |
dc.subject.keywordAuthor | PTFE | - |
dc.subject.keywordAuthor | High energy full-cell | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.