Full metadata record

DC Field Value Language
dc.contributor.authorJo, SeongHoon-
dc.contributor.authorRoh, Soonjong-
dc.contributor.authorShim, Jaemin-
dc.contributor.authorYu, Ji Woong-
dc.contributor.authorJung, Youngmee-
dc.contributor.authorJang, Woo Young-
dc.contributor.authorSeo, Bumjoon-
dc.contributor.authorWon, You-Yeon-
dc.contributor.authorYoo, Jin-
dc.date.accessioned2024-08-01T05:00:19Z-
dc.date.available2024-08-01T05:00:19Z-
dc.date.created2024-08-01-
dc.date.issued2024-08-
dc.identifier.issn1525-7797-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150324-
dc.description.abstractHydrogels are promising materials for biomedical applications, particularly in drug delivery and tissue engineering. This study highlights thermoresponsive hydrogels, specifically poly(lactic-co-glycolic acid) (PLGA)-poly(ethylene glycol) (PEG)-PLGA triblock copolymers, and introduces a feed rate-controlled polymerization (FRCP) method. By utilizing an organic catalyst and regulating the monomer feed rate, the sequence distribution of PLGA within the triblock copolymer is controlled. Various analyses, including 13C NMR and rheological measurements, were conducted to investigate the impact of sequence distribution. Results show that altering sequence distribution significantly influences the sol-gel transition, hydrophobicity-hydrophilicity balance, and drug release profile. Increased sequence uniformity lowers the glass transition temperature, raises the sol-gel transition temperature due to enhanced hydrophilicity, and promotes a more uniform drug (curcumin) distribution within the PLGA domain, resulting in a slower release rate. This study emphasizes the importance of PLGA sequence distribution in biomedical applications and the potential of FRCP to tailor thermoresponsive hydrogels for biomedical advancements.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleModulating the Thermoresponsive Characteristics of PLGA-PEG-PLGA Hydrogels via Manipulation of PLGA Monomer Sequences-
dc.typeArticle-
dc.identifier.doi10.1021/acs.biomac.4c00817-
dc.description.journalClass1-
dc.identifier.bibliographicCitationBiomacromolecules, v.25, no.8, pp.5374 - 5386-
dc.citation.titleBiomacromolecules-
dc.citation.volume25-
dc.citation.number8-
dc.citation.startPage5374-
dc.citation.endPage5386-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001272004400001-
dc.identifier.scopusid2-s2.0-85198755154-
dc.relation.journalWebOfScienceCategoryBiochemistry & Molecular Biology-
dc.relation.journalWebOfScienceCategoryChemistry, Organic-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.relation.journalResearchAreaBiochemistry & Molecular Biology-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPolymer Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusTHERMOREVERSIBLE GELATION-
dc.subject.keywordPlusTRIBLOCK COPOLYMERS-
dc.subject.keywordPlusL-LACTIDE-
dc.subject.keywordPlusBLOCK-
dc.subject.keywordPlusPOLYMERIZATION-
dc.subject.keywordPlusHYDROLYSIS-
dc.subject.keywordPlusPACLITAXEL-
dc.subject.keywordPlusGLYCOLIDE-
dc.subject.keywordPlusDRUG-RELEASE-
dc.subject.keywordPlusPOLY(LACTIC-CO-GLYCOLIC ACID)-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE