Full metadata record

DC Field Value Language
dc.contributor.authorKumar, Yogendra-
dc.contributor.authorKim, Tae Hyeong-
dc.contributor.authorSubiyanto, Iyan-
dc.contributor.authorDevina, Winda-
dc.contributor.authorByun, Segi-
dc.contributor.authorNandy, Subhajit-
dc.contributor.authorChae, Keun Hwa-
dc.contributor.authorLim, Suim-
dc.contributor.authorKim, Bumjin-
dc.contributor.authorKang, Sanghui-
dc.contributor.authorHan, Seong Ok-
dc.contributor.authorYim, Kanghoon-
dc.contributor.authorYoo, Jungjoon-
dc.contributor.authorKim, Hyunuk-
dc.date.accessioned2024-08-01T05:00:29Z-
dc.date.available2024-08-01T05:00:29Z-
dc.date.created2024-08-01-
dc.date.issued2024-09-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150325-
dc.description.abstractLithium-ion batteries suffer from reduced capacities and stabilities at low temperature due to poor Li intercalation to the graphite anode. Graphite has a high activation energy (similar to 0.6 eV) to accommodate Li ions, resulting in a substantial capacity drop at low temperatures. Additionally, it can induce the formation of Li dendrites on the surface of graphite. To address this issue, we designed and synthesized a redox-active fluorothianthrene-based MOF (SKIER-5). SKIER-5, which undergoes three-electron redox reactions resulting from the fluorothianthrene-based organic ligand and Ni, exhibited excellent electrochemical performance at various temperatures when used as an anode. In particular, the discharge capacities of SKIER-5 were significantly higher than those of commercial graphite at low temperatures (<-10 degrees C) because of the lower activation energy (similar to 0.23 eV) for charge transfer. Moreover, it maintained stability when cycled at -20 degrees C, highlighting its potential as a promising anode material in low-temperature environments.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleRedox-active conductive metal-organic framework with high lithium capacities at low temperatures-
dc.typeArticle-
dc.identifier.doi10.1039/d4ta01779j-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Materials Chemistry A, v.12, no.33, pp.21732 - 21743-
dc.citation.titleJournal of Materials Chemistry A-
dc.citation.volume12-
dc.citation.number33-
dc.citation.startPage21732-
dc.citation.endPage21743-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001270154400001-
dc.identifier.scopusid2-s2.0-85199087189-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusANODE MATERIALS-
dc.subject.keywordPlusFORCE-FIELD-
dc.subject.keywordPlusION-
dc.subject.keywordPlusPOLYMERS-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusLI4TI5O12-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE