Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lim, Seung Ji | - |
dc.contributor.author | Lee, Kyung-Jin | - |
dc.contributor.author | Nam, Hansung | - |
dc.contributor.author | Kim, Sang Hyun | - |
dc.contributor.author | Kim, Eun-ju | - |
dc.contributor.author | Lee, Seunghak | - |
dc.contributor.author | Chung, Jaeshik | - |
dc.date.accessioned | 2024-08-01T05:30:08Z | - |
dc.date.available | 2024-08-01T05:30:08Z | - |
dc.date.created | 2024-08-01 | - |
dc.date.issued | 2024-10 | - |
dc.identifier.issn | 0165-9936 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/150326 | - |
dc.description.abstract | The anomalous (i.e., non-Fickian) transport characteristics (e.g., early arrival/long tailing and other nonGaussian plume properties) make it challenging to apply classical transport theories to the transport and retention of microplastics in soil due to their heterogeneity. This overview attempts 1) to delineate the previous studies on the transport of colloids and MPs, which used the recently developed analytical devices (e.g., microfluidics and micro-CT) and process-based (e.g., lattice Boltzmann method (LBM) and pore network modeling (PNM)) or data-driven models (e.g., machine learning (ML) techniques) and 2) to provide future directions for bridging the pore- and continuum-scale properties. Although the LBM and PNM offer significant advantages in depicting particle transport at the pore scale, their employment at larger scales is hindered by computational demands. Nonetheless, applying these methods to generate datasets for ML techniques is anticipated to provide a robust tool for an accurate and rapid continuum-scale microplastics transport model. | - |
dc.language | English | - |
dc.publisher | Elsevier BV | - |
dc.title | Progress and future directions bridging microplastics transport from pore to continuum scale: A comprehensive review for experimental and modeling approaches | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.trac.2024.117851 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | TrAC - Trends in Analytical Chemistry, v.179 | - |
dc.citation.title | TrAC - Trends in Analytical Chemistry | - |
dc.citation.volume | 179 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 001274684600001 | - |
dc.identifier.scopusid | 2-s2.0-85198944802 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Analytical | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.type.docType | Review | - |
dc.subject.keywordPlus | SATURATED POROUS-MEDIA | - |
dc.subject.keywordPlus | NATURAL ORGANIC-MATTER | - |
dc.subject.keywordPlus | ZEROVALENT IRON NANOPARTICLES | - |
dc.subject.keywordPlus | WALLED CARBON NANOTUBES | - |
dc.subject.keywordPlus | COLLOID TRANSPORT | - |
dc.subject.keywordPlus | SILVER NANOPARTICLES | - |
dc.subject.keywordPlus | PARTICLE-SIZE | - |
dc.subject.keywordPlus | IONIC-STRENGTH | - |
dc.subject.keywordPlus | ATTACHMENT EFFICIENCY | - |
dc.subject.keywordPlus | DEPOSITION BEHAVIOR | - |
dc.subject.keywordAuthor | Reactive transport | - |
dc.subject.keywordAuthor | Microfluidics | - |
dc.subject.keywordAuthor | Micro-CT | - |
dc.subject.keywordAuthor | Pore network modeling | - |
dc.subject.keywordAuthor | Machine learning | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.