Full metadata record

DC Field Value Language
dc.contributor.authorIm, Taehun-
dc.contributor.authorLee, Juyun-
dc.contributor.authorKim, Sung-Chul-
dc.contributor.authorRandrianandraina, Joharimanitra-
dc.contributor.authorLee, Joo-Won-
dc.contributor.authorChung, Myoung Won-
dc.contributor.authorPark, Taesung-
dc.contributor.authorLow, Kam-Hung-
dc.contributor.authorLee, Seungkyu-
dc.contributor.authorOh, Soong Ju-
dc.contributor.authorKang, Yun Chan-
dc.contributor.authorWeon, Seunghyun-
dc.contributor.authorLee, Jung-Hoon-
dc.contributor.authorKim, Seon Joon-
dc.contributor.authorJeong, Sohee-
dc.date.accessioned2024-08-08T01:00:12Z-
dc.date.available2024-08-08T01:00:12Z-
dc.date.created2024-08-08-
dc.date.issued2024-07-
dc.identifier.issn2051-6347-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150372-
dc.description.abstractWith the increasing demand for ammonia applications, there is a significant focus on improving NH3 detection performance at room temperature. In this study, we introduce a groundbreaking NH3 gas sensor based on Cu(i)-based coordination polymers, featuring semiconducting, single stranded 1D-helical nanowires constructed from Cu-Cl and N-methylthiourea (MTCP). The MTCP demonstrates an exceptional response to NH3 gas (>900% at 100 ppm) and superior selectivity at room temperature compared to current materials. The interaction mechanism between NH3 and the MTCP sensor is elucidated through a combination of empirical results and computational calculations, leveraging a crystal-determined structure. This reveals the formation of NH3-Cu and NH3-H3C complexes, indicative of a thermodynamically favorable reaction. Additionally, Ag-doped MTCP exhibits higher selectivity and a response over two times greater than the original MTCP, establishing it as a prominent NH3 detection system at room temperature.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleSingle stranded 1D-helical Cu coordination polymer for ultra-sensitive ammonia sensing at room temperature-
dc.typeArticle-
dc.identifier.doi10.1039/d4mh00651h-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMaterials Horizons-
dc.citation.titleMaterials Horizons-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-85199552017-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusTHIN-FILM-
dc.subject.keywordPlusSULFIDE-
dc.subject.keywordPlusSENSORS-
dc.subject.keywordPlusFTIR-
dc.subject.keywordPlusNH3-
dc.subject.keywordPlusMETAL-ORGANIC FRAMEWORK-
dc.subject.keywordPlusELECTRONIC-STRUCTURES-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE