Full metadata record

DC Field Value Language
dc.contributor.authorNguyen, Dang Le Tri-
dc.contributor.authorNguyen, Ngoc-Anh-
dc.contributor.authorHo, Thi H.-
dc.contributor.authorNguyen, Thao P.-
dc.contributor.authorDang, Huyen Tran-
dc.contributor.authorPham, Duong Dinh-
dc.contributor.authorNguyen, Tuan Loi-
dc.contributor.authorThi, L. L. D.-
dc.contributor.authorTran, Tuan Ngoc-
dc.contributor.authorTran, Minh X.-
dc.contributor.authorNguyen, Tung M.-
dc.date.accessioned2024-08-16T02:00:08Z-
dc.date.available2024-08-16T02:00:08Z-
dc.date.created2024-08-16-
dc.date.issued2024-10-
dc.identifier.issn0016-2361-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150427-
dc.description.abstractIn the pursuit of a more sustainable future and to combat the environmental impact of fossil fuels, green hydrogen production through water electrolysis is gaining traction. While noble metals currently dominate electrocatalyst design, their expense limits widespread adoption. This study proposes a solution by outlining a method for designing efficient and affordable electrocatalysts based on non-precious metals. Herein, we introduce a novel S-incorporated Ni2O3 2 O 3 supported on biowaste-derived activated carbon (S-Ni2O3@AC) 2 O 3 @AC) synthesized from pumpkin shells. This facile and sustainable approach utilizes readily available resources. The S-Ni2O3@AC 2 O 3 @AC nanocomposite demonstrates excellent HER performance with low overpotential and high durability. This is attributed to a high surface area of the composite, fast charge transfer, optimal hydrogen adsorption, and lowered energy barrier for water dissociation facilitated by sulfur incorporation, which is demonstrated by density functional theory (DFT) calculations. This research paves the way for cost-effective and sustainable hydrogen evolution electrocatalysts.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titlePumpkin shell-derived activated carbon-supported S-incorporated transition metal oxide electrocatalyst for hydrogen evolution reaction-
dc.typeArticle-
dc.identifier.doi10.1016/j.fuel.2024.132357-
dc.description.journalClass1-
dc.identifier.bibliographicCitationFuel, v.373-
dc.citation.titleFuel-
dc.citation.volume373-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001286304000001-
dc.identifier.scopusid2-s2.0-85197514661-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusDOPED CARBON-
dc.subject.keywordPlusSTABLE ELECTROCATALYST-
dc.subject.keywordPlusNISE2 NANOPARTICLES-
dc.subject.keywordPlusHIGHLY EFFICIENT-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusNANOWIRES-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordPlusBIOMASS-
dc.subject.keywordPlusNANOARCHITECTURES-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordAuthorBiowaste activated carbon-
dc.subject.keywordAuthorNanocomposites-
dc.subject.keywordAuthorTransition metal materials-
dc.subject.keywordAuthorHydrogen evolution reaction-
dc.subject.keywordAuthorDensity functional theory-
dc.subject.keywordAuthorWater splitting-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE