Fault-Tolerant Quantum Computation by Hybrid Qubits with Bosonic Cat Code and Single Photons
- Authors
- Lee, Jaehak; Kang, Nuri; Lee, Seok-Hyung; Jeong, Hyunseok; Jiang, Liang; Lee, Seung-Woo
- Issue Date
- 2024-08
- Publisher
- AMER PHYSICAL SOC
- Citation
- PRX Quantum, v.5, no.3
- Abstract
- Hybridizing different degrees of freedom or physical platforms potentially offers various advantages in building scalable quantum architectures. Here, we introduce a fault-tolerant hybrid quantum computation by building on the advantages of both discrete-variable (DV) and continuous-variable (CV) systems. In particular, we define a CV-DV hybrid qubit with a bosonic cat code and a single photon, which is implementable in current photonic platforms. Due to the cat code encoded in the CV part, the predominant loss errors are readily correctable without multiqubit encoding, while the logical basis is inherently orthogonal due to the DV part. We design fault-tolerant architectures by concatenating hybrid qubits and an outer DV quantum error-correction code such as a topological code, exploring their potential merit in developing scalable quantum computation. We demonstrate by numerical simulations that our scheme is at least an order of magnitude more resource efficient compared to all previous proposals in photonic platforms, allowing us to achieve a record-high loss threshold among existing CV and hybrid approaches. We discuss the realization of our approach not only in all-photonic platforms but also in other hybrid platforms including superconducting and trapped-ion systems, which allows us to find various efficient routes toward fault-tolerant quantum computing.
- Keywords
- DETERMINISTIC GENERATION; ERROR-CORRECTION; STATES; TELEPORTATION; ENTANGLEMENT; ADVANTAGE
- ISSN
- 2691-3399
- URI
- https://pubs.kist.re.kr/handle/201004/150430
- DOI
- 10.1103/PRXQuantum.5.030322
- Appears in Collections:
- KIST Article > 2024
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.